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1 Introduction

Rattlesnake is the radiation transport application built with MOOSE for modern multiphysics simulations. Rat-
tlesnake uses finite element methods (FEM) to solve steady-state, transient and k-eigenvalue problems for the
multigroup transport equations, the linear Boltzmann equation discretized with the multigroup approximation
for the energy (or frequency) independent variable.

FEM is a numerical technique for finding approximations to partial differential equations (PDE) like the trans-
port equation. To use FEM, the geometry is first meshed with an unstructured grid composed of smaller parts
or finite elements. Then the solution is approximated with linear combinations of basis functions which have
local supports on these elements. The number of basis functions is the number of unknowns in the solution.
The variational form of the PDE can then be converted to an algebraic equation that can be numerically solved.
The advantages of FEM include an accurate representation of complex geometries, capture of local effects, and
etc. The number of shape functions on the same element support is determined by the local expansion of the
polynomial order. It is common in Rattlesnake to use the Lagrangian shape functions to solve for variables that
are continuous such as primal variables and monomials to solve for discontinuous variables.

The key architectural components within Rattlesnake are:

1. Particle type - The particle refers to the phenomena to be modeled. This is either neutrons or thermal radi-
ation (i.e. ~0.1-1000ym wavelength) currently. There is also an option “common” that uses the common
portions of all radiation transport equations.

2. Equation type - Based on the particle, the type of equation can either be the primal equation with the
angular flux as the variable or the adjoint equation with the adjoint or importance flux as the variable.

3. Equation problem type - k-eigenvalue, steady-state source and transient. The equation that is solved also
depends on the problem type. For instance, in a k-eigenvalue problem the source is balanced to the loss
term by 1/k. The steady-state source problem solves for the source term. The transient equation contains
all a time derivative term.

4. Scheme for solve - The schemes are explained below. The particle type, equation type and equation
problem type are capabilities within the scheme type.

5. Multiscale - Multiscale is a capability that non-uniform scales (or homogenization with corresponding
discretization schemes) can be applied on the solution domain to enable first-principle simulation of
a real-size problem without iterations on subdomain interface variables. Regions of different levels of
homogenization can be treated most efficiently with the multiscale approach. It can be used to avoid
sometimes inaccurate pre-homogenization of high-resolution regions.

Some schemes do not have all the possible options available at this point in time. Rattlesnake is in the develop-
ment process and capabilities will be added in the future. The capability as of this writing for the schemes are
summarized in Table 1.

Table 1 The capability of schemes.

Mathematical Thermal
Scheme adjoint Neutron | radiation | Transient | Multiscale

CFEM-Diffusion Y Y Y Y Y
DFEM-Diffusion N Y N Y N
SAAF-CFEM-SN Y Y Y Y Y
SAAF-CFEM-PN N Y N Y Y
LS-CFEM-SN N Y N Y N
LS-CFEM-PN N N N N N
DFEM-SN Y Y N Y N
DFEM-PN N N Y N N




When setting up a Rattlesnake input file, the scheme choice is of utmost importance. The schemes within
Rattlesnake are listed below along with characteristics and additional capabilities:

e SAAF-CFEM-SN: It stands for SAAF (self-adjoint angular flux)' formulation with CFEM (continuous fi-
nite element methods) and SN (discrete ordinates methods). SAAF is a 2" order formulation, which is
a transformation of the Boltzmann transport equation or 1%t order formulation. CFEM is a method for
solving the flux and provides a continuous flux solution. Built into the CFEM is the treatment for the
variables: time (t) and space (). SN is a method for treating the angular variable (f)). Energy (E) is
accounted for by the multigroup approximation. The computing effort is increased about linearly with
the increased number of streaming directions. Thus, SN is typically more suitable for heterogeneous cal-
culations, where higher angular resolution is desired, than the calculations with the significant spatial
homogenization. This is true for all SN schemes.

Characteristics

— Global particle conservation. Global particle conservation guarantees that the sum between leakage,
source and absorption will be conserved, however conservation does not hold for each individually
also known as element-wise conservation. Global conservation is important for obtaining accurate
eigenvalues in eigenvalue problems.

— The original SAAF formulation involves an inverse total cross-section (1/%¢) term which is problem-
atic for voids or near voids where %; is zero or close to zero. The SAAF-CFEM-SN scheme has a
treatment to overcome this issue.

— The Lagrangian shape function for finite element solves is supported up to a polynomial order two,
which is imposed by MOOSE (libMesh). Other shape function families should have a similar maxi-
mum order. The disadvantage to increasing the polynomial order is a dramatic increase in comput-
ing cost but increases the solution accuracy. This is true for all CFEM schemes.

Optional Built-in capabilities

— The angular acceleration scheme, nonlinear diffusion acceleration (NDA) is available. NDA can only
be implemented when SN is used for the angle characterization. The acceleration is accomplished
by using picard iterations between the transport-corrected low-order (ie. diffusion) solves and the
high-order (ie. transport) updates.

o SAAF-CFEM-PN: It differs from SAAF-CFEM-SN in the angular discretization (€}) by using PN (spherical
harmonics expansion method).

Characteristics

— Global particle conservation. Good for eigenvalue problems.
— There is no near-void or void treatment for SAAF-CFEM-PN at this moment.

— Computing cost increases fast with increasing PN order. Typically, low-order PN calculations are
performed, which consequently restricts the application to the problems with significant homoge-
nization of the materials and cross-sections, where the transport effect is not as strong. It is preferred
in low-order PN cases over SAAF-CFEM-SN because the same numbers of unknowns typically ren-
ders smaller discretization errors. This is true for all PN schemes.

Optional Built-in capabilities
— We currently do not provide any angular acceleration.

e LS-CFEM-SN: It stands for LS (least-square) formulation with CFEM and SN. LS is also a 2"? order for-
mulation that is derived from the Boltzmann transport equation.
Characteristics

— The LS formulation does not include an inverse total cross-section (1/%;) term, making it naturally
work for void or near void regions.

Do no confuse SAAF with the adjoint equation. SAAF is a scheme for solving equations and can be applied to any equation type.
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— LS does not have global conservation.
Optional Built-in capabilities
— The streaming plus collision operator is SPD (symmetric positive definite), which makes it suitable
for CG (conjugate gradient) method. The CG generally improves the cpu time and memory usage.
— NDA is available. The low-order diffusion scheme can be conservative, which improves the accuracy
of eigenvalue calculations.
e LS-CFEM-PN: It differs from LS-CFEM-SN by PN angular discretization (Q)).
Characteristics
— The LS formulation does not include an inverse total cross-section (1/%;) term, making it naturally
work for void or near void regions.
- LS-CFEM-PN does not have global conservation.
e DFEM-SN: It stands for DFEM (discontinuous finite element methods) and SN. The DFEM is directly
discretizing the Boltzmann transport or 1% order equation.

Characteristics

— It does not need void treatment.

— DFEM has no order limitation on the Lagrangian shape function, unlike the CFEM schemes which
are capped at 2™ order. Also with DFEM, increasing the mesh refinement and/or the shape function
order increases the number of unknowns which scales almost linearly in computing cost. The spatial
convergence is better for problems with solution singularity when compared to CFEM schemes.
DFEM is local and global conservative. These are true for all DFEM schemes.

— The solver is based on a mesh sweeper which does not impose limitations on the mesh quality.
— It is matrix-free which lowers the memory usage.

— The down side is that we do not have a good sweeper supporting parallelization with domain de-
composition at this moment.

Optional Built-in capabilities

— Supports flexible NDA in the sense that a diffusion accelerator mesh can be coarser than the transport
mesh and the diffusion accelerator shape function polynomial can be different than the transport
shape function.

e DFEM-PN: It differs from DFEM-SN by PN angular discretization (Q)). It has the advantages and disad-
vantages owned by DFEM and PN.

Characteristics
— It does not need void treatment.

e CFEM-Diffuison: Diffusion calculation with CFEM.

Characteristics

- Diffusion approximation
— Computing cost is much smaller than transport schemes.

— Relies on good diffusion coefficients.

e DFEM-Diffuison: Diffusion calculation with DFEM.

Characteristics

- Diffusion approximation
— Computing cost is much smaller than transport schemes.

— Relies on good diffusion coefficients.
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— Could be a better choice than the CFEM-Diffusion when a high order polynomial is desired for the
shape function to increase the accuracy of the solve.

— The number of unknowns is higher for the shape functions to achieve the same level of accuracy
with the same shape function order as CFEM-Diffusion.

It is recommended to use the algebraic multigrid method (AMG) in the executioner block for all the schemes
except for the DFEM-SN scheme. As a cautionary note, AMG typically requires the mesh to not contain ele-
ments whose aspect ratio, or perimeter to volume ratio, is very high. There is an added burden on the user to
be vigilant of the mesh quality. AMG is a current area of research with several unknowns for applicability.

To summarize the scheme options, one can choose between SAAF, LS, the original transport formulation and
diffusion, CFEM or DFEM methods for solving and SN or PN angular discretization. The SAAF introduces a
problem for void or near void regions but can be solved using a special treatment. As of this writing the special
treatment has only been developed for the SN case and is not availabe for PN. SAAF has global particle con-
servation making it a good choice for k-eigenvalue calculations. The LS method does not have global particle
conservation but can be used for k-eigenvalue calculations with the SN scheme and NDA. DFEM methods are
not restricted on the order for the shape functions. CFEM methods are restricted to 2" order for Lagrangian
shape functions. The higher the order of the shape function typically produces a more accurate solution in
terms of the numbers of unknowns. A trade-off exists between the higher the order of the shape function and
the computational efficiency. The original transport formulation (ie. DFEM-SN) avoids the problems associated
with SAAF and LS. However, at the present moment DFEM-SN does not have a sweeper with parallel domain
decomposition. The user should select schemes based on the particular application.

Multiscale transport capability [], along with different schemes can be applied to mesh subdomains simultane-
ously. This can reduce the computing cost and avoid possible difficult pre-homogenization in certain subdo-
mains. A separate toolkit, YAKXS [1], for multigroup cross section management was developed to support Rat-
tlesnake calculations with feedback both from changes in the field variables, such as fuel temperature, coolant
density, etc., and are accessed from importing files with the field variables into the isotope inventory.

Now, for a brief introduction to the MOOSE /Rattlesnake syntax. Rattlesnake takes text-based input files, which
are parsed by GetPot [2]. Advantages of using the GetPot format to manage the inputs are:

1. All inputs are naturally managed with a tree structure;

2. The input order is irrelevant in a sense that the blocks on the same level can be arbitrarily ordered;

3. Comments can be added anywhere with a leading pound sign #.

A sample input is,

#

# The Mesh block is a MOOSE block and is used to define the physical geometry, individual mesh zones (sub-domains)
# and side-sets (used to specify where boundary conditions are located).

# The mesh can also be imported from files for complex geometries.

#

[Mesh]

type = GeneratedMesh
dim = 2

xmin = 0

xmax = 60

ymin = 0

ymax = 60
elem_type = QUAD4
nx = 8

ny = 8
uniform_refine = 0
1
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#
# The TransportSystems block is the main block for Rattlesnake and will be covered in great detail.
# TransportSystems performs several built in actions to setup the Variables and Kernels blocks for transport.
# The Variables and Kernels blocks are MOOSE blocks and may still be used for other physics.
#
[TransportSystems]
particle = neutron
equation_type = eigenvalue
G=1
ReflectingBoundary = ’right top’
VacuumBoundary = ’left bottom’
[./sn]
scheme SAAF-CFEM-SN
family = LAGRANGE
order = FIRST
AQorder = 4
AQtype = Level-Symmetric
fission_source_as_material = true
hide_angular_flux = true
[../]
(]
#
# The Materials block is a general MOOSE block and is generally used to setup
# the material properties and link them to certain mesh zones (sub-domains).

# Certain sub-blocks, in the Materials block, are used by Rattlesnake to define cross-sections
# and setup field variables such as temperature dependent cross-sections.
#
[Materials]
[./nm]
type = ConstantNeutronicsMaterial
block = 0

sigma_t = 1.0
sigma_s = 0.99

fissile = true
nu_sigma_f = 0.01
chi = 1.0
[../]
(]
#

# The Postprocessors block is a MOOSE block and is used to calculate derived quantities from primal variables
# This example is taking the integral of the scalar flux for energy group O.
# The integral is for the entire mesh since no particular sub-domain is mentioned

#
[Postprocessors]
[./fluxintegrall
type = ElementIntegralVariablePostprocessor
variable = flux_moment_gO_LO_MO
execute_on = linear
[../]
N
#
# The Executioner is a MOOSE block. As the name implies it controls the execution of the solve. Options include
# solver types, solution tolerances, type of calculation to perform and many more options.
# This particular example is performing a non-linear eigenvalue calculation.
# Notice eigenvalue was also specified in the TransportSystems block above. Based on the scheme
# (i.e. SAAF-CFEM-SN, etc. found in the TransportSystems block) options may become applicable
# in the Executioner such as AMG.
#

[Executioner]
type = NonlinearEigen
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free_power_iterations = 4
source_abs_tol = le-6
output_before_normalization = false
output_after_power_iterations = false

#Preconditioned JFNK (default)
solve_type = ’PJFNK’

(0

#

# The Outputs block is a MOOSE block and is used to determine when and files types to save the data.
# "file_base =" specifies the file name without the extension.

# Be mindful that choosing which data to print to the screen is controlled in other blocks. By default, all
# variables, auxiliary variables and postprocessors are recorded.

#

[Outputs]
file_base = out
exodus = true

(1

This input deck is copied from the file “yak/tests/actions/neutron_saaf_sn_cfem/neutron_saaf_sn.i”, with com-
ments added for clarification.

From the example we can clearly see the tree structure of the inputs. The names of the zero-level blocks are
embraced with bracket parenthesis [block name]. The zero-level blocks are concluded with empty parenthesis
[1. The zero-level block names must match the names in Rattlesnake and MOOSE. All sub-blocks are given
with a block name with leading [./sub-block name] embraced with bracket parenthesis and are concluded
with [../]. The sub-block names are be chosen by the user, unless explicitly mentioned. Sub-blocks on the
same level must be unique. To specify which sub-blocks to use within Rattlesnake/MOOSE use the "type ="
then the sub-block name as listed in Rattlesnake/MOOSE. For instance, in the example above the user used the
Rattlesnake sub-block “ConstantNeutronicsMaterial”. First, the user gave the sub-block in the input file a new
name called ”[./nm]” and used “type = ConstantNeutronicsMaterial” to have access to all the options available
within ConstantNeutronicsMaterial sub-block. The options set in this sub-block are only applicable to [./nm].
More sub-blocks could have been define using the same ConstantNeutronicsMaterial Rattlesnake sub-block but
with different settings. We will term this tree structure as the Rattlesnake input syntax from now on. Currently
all valid MOOSE syntax are also valid for Rattlesnake.

Following are some useful commands that are commonly used. However, it is required that Rattlesnake be
compiled before performing these commands. To learn about compiling see Sec. 2.

All supported syntax can be seen by

./rattlesnake-opt --syntax

GetPot treats values of the parameters as strings. If the string contains spaces, the string must be quoted with
the single quote sign ’. All parameters of all syntax can be dumped using:

./rattlesnake-opt --dump

where rattlesnake-opt is the Rattlesnake executable generated in the optimized mode (opt). This dump takes a
search string to filter the entire syntax, for instance, the following
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./rattlesnake-opt --dump Outputs

dumps parameters for the Outputs block exclusively. The parameters have to be on the leaf level of the syntax.
We are currently debating if we want to enable parameters on the parenting levels so that all the child levels
can share those parameters when the parameters on the leaf level are not given. Invalid parameters can be put
into input files. Rattlesnake will print a warning message on the screen for those invalid parameters. Users
can use —e command line option to completely disable invalid parameters. Duplicated parameters are allowed
by default to allow users overriding previously provided parameters. However this typically means there is a
typo. Users can use ~o command line option to disallow duplicated parameters.

Users can run Rattlesnake with,

./rattlesnake-opt -i <InputFile>

InputFile represents the file name of the input file. Command line option --n-threads=<n> enables multi-
threading with n number of threads. Rattlesnake executable can also be invoked with MPI

mpirun -n <n> ./rattlesnake-opt -i <InputFile>

where 7 is the number of processors. A complete list of command line options can be seen with

./rattlesnake-opt
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2 Getting started

2.1 Obtain access

Rattlesnake is currently an export-controlled software. (More to be added.)

2.2 Install and test

1. The first step depends on where you will install Rattlesnake

o Local desktop:

Follow the link in the MOOSE wiki page of your platform to install the redistributable packages.
Then set up ssh tunnel with your password by

>ssh -D 5555 hpclogin.inl.gov

and change the proxy setting for socks with localhost as the proxy with port 5555. You will need the
remote access to HPC to accomplish this step.

e home directory on INL HPC:
Load the development module.

>module load moose-dev-gcc

2. Optionally create a fork of the main Rattlesnake repository at hpcgitlab.inl.gov.

3. Create a directory where you want to store Rattlesnake, for example, ~/projects. Change directory into
it and use git to clone the code.

>mkdir ~/projects
>cd ~/projects
>git clone git@hpcgitlab.inl.gov:USERNAME/rattlesnake.git

USERNAME is idaholab if you skipped the second step otherwise your high performance computing
(HPC) user account.

4. Grab and initialize the submodule and build libMesh.

>cd “/projects/rattlesnake
>git submodule --update init
>cd ~/projects/rattlesnake/moose/scripts; ./update_and_rebuild_libmesh

5. Build Rattlesnake.

>cd “/projects/rattlesnake
>make -3j8

We add -j8 to compile using 8 processors. You can use whatever number you have available. The exe-
cutable rattlesnake-opt will be generated after a successful build. Extension opt means that this executable
is an optimized version. Users can also build two other versions, dbg and oprof for debugging or profiling
purpose by
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2.3

>METHOD=dbg make -j8

or

>METHOD=oprof make -j8

These two builds are optional.

. Run the regression tests to verify that the build was correct.

>./run_tests -j4

Here we use 4 processors with -j4 to make the tests run faster.

With the rattlesnake-opt built. It is now possible to run input files and other commands listed at the end of
Sec. 1.

Use tutorials as templates

Sec. 3 provides several tutorial inputs. They can be viewed independently. They demonstrate the Rattlesnake
capabilities and can be used as templates for users to create their own inputs. Keywords of these tutorials are
listed:

Kobayashi benchmark: One-group source problem; Regular Cartesian geometry; SN scheme; The source
iteration.

Benchmark 16A1-1 (Eigenvalue Problem): One-dimension; Two-group eigenvalue problem; PJFNK eigen
solver.

Benchmark 16A1-1 (Transient Problem): One-dimension; two-group transient problem; Initial condition
from the eigenvalue calculation; Time integration and stepping with PJENK.

Takeda benchmark Mode 4: Four-group eigenvalue problem; Hexagonal geometry; Rotational periodic
boundary condition.

LRA benchmark (14-A1): Two-group transient problem; Adiabatic temperature model; Flux map; Custom
neutronics materials.

LRA PKE: PKE (point kinetics equation) for the LRA benchmark; PKE parameter dumping with spatial
kinetics; Reactivity function fitting.

C5G7-2D with SAAF-SN-CFEM NDA: LWR mesh generation; INSTANT XML cross section format; Flux
map; NDA with the SAAF-SN-CFEM scheme; Transport update with AMG.

C5G7-2D using First Order NDA solver: LWR mesh generation; INSTANT XML cross section format;
Flexible NDA with the first-order SN scheme; Transport update with sweeper.

Coupled reactor: multi-region calculation; coupled reactor.
A problem demonstrates YAKXS: Criticality search; YAKXS XML cross section format.

A thermal radiation benchmark: Thermal radiation transport.
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2.4 Instruction on using this manual

Sec. 4 TransportSystems to Sec. 12 Outputs catalog the Rattlesnake input parameters.

The format structure for each of the input parameters will follow a basic pattern where a simple description of
the option is provided, followed by the possible choices for the parameter, a default value and branch structure
syntax. To illustrate, Sec. 4.1 is the particle option for the transport system and the catalog entry is shown below:

Description: Particle type of the transport system
Data type: Enumeration (/common/neutron/thermal/)
Default value: <required>

Syntax: TransportSystems/particle

The particle option changes the transport equation based on the particle of interest. The possible choices for
particle are “common, neutron or thermal”, where neutron is for neutrons, thermal is for thermal radiation and
common uses the common portions of the transport equation between neutrons and thermal radiation. The
syntax shows that the particle option is located within the TransportSystems branch.

An example input syntax would look like the following:

[TransportSystems]
# particle set to neutron
particle = neutron

1

All parameter names are in italic font. All parameters in blue color are advanced and red are basic. Most param-
eters have default values or are allow to be empty. Users are not required to set the values of these parameters.
If the parameter is empty, Rattlesnake will not activate the functionality represented by that parameter. If a
parameters is required, it will be marked as required in the default value field. The data types are usually either
a name, integer or logical. Logical inputs can be 1, 0 or true, false. The types can also be vectors and must be
surrounded by single quotes.

v

The tree structure/block syntax of all the parameters are showed in the syntax field. The ”*” in the syntax
means wild-card and is used to represent the name given by the user for the sub-block. For instance, the user
defines the sub-block scheme-name in the example code below, while one would go to the SAAF-CFEM-SN
scheme to determine the available options.

[TransportSystems]

[./sheme-name]
scheme = SAAF-CFEM-SN
family = LAGRANGE
order = FIRST

1
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2.5 General Rattlesnake inputs

The following sections will provide a brief description of common input blocks used for MOOSE and Rat-
tlesnake with simple example blocks to show how they operate together. The code presented in the following
sections are meant to explain how the input code is organized and will not function alone. To view full examples
go to Sec. 3.

As was mentioned in the Introduction (Sec. 1), the Rattlesnake input file is structured in a tree system with
branches or blocks beginning with brackets ”[ ]” around the name and ending with a bracket. Sub-blocks also
begin and end with brackets. The difference between the sub-block and the main block are observed by the ./
before the sub-block name and closing the sub-block with [. ./]. Sub-blocks are also named by the user, while
the main blocks must have the same name as given by MOOSE or Rattlesnake.

Below is an example of a main block and two sub-blocks that have the same functionality. You will also notice
that there is an option called block = . This usage of “block” is referring to the mesh, not the block syntax.
Based on the context, the user should be able to distinguish between the two.

# The # symbol is a comment
#
# Postprocessors is the main block and gets its name from \MOOSE
[Postprocessors]

# Fluxl and Flux2 are sub-blocks and are named by the user.

# Each sub-block must begin with [./ ].

[./Fluxi]

# Fluxl needs to know what sub-block within \RSN or \MOOSE to use. This is handled by "type = "

ElementIntegralVariablePostprocessor is the sub-block in Postprocessors to be used for this example.

This particular post-processor calculates the integral of some variable with respect to space.
The variable being integrated is the scalar flux (flux_moment) for energy group O.
The block = ’1 2 3 4 5 6 7’ specifies which regions within the mesh to apply the integral.
If no block is specified the integral will apply to the entire mesh.
type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_gO0_LO_MO

#
#
#
#
#
#

[../] # Fluxl is closed by the [../]
#
# Flux2 is a new sub-block
# It is using the same sub-block type as Fluxl. The difference is that the variable is now
# the scalar flux (flux_moment) for energy group 1 instead of group O.
#
[./Flux2]
type = ElementIntegralVariablePostprocessor
block = ’1 234567’
variable = flux_moment_gl_LO_MO
[../]
# Flux2 is closed by the [../]
(1

# The main block [Postprocessors] is closed with ending brackets [].

This example illustrates why each sub-block needs to be named by the user. By allowing the user to specify
the name, the functionality (specified by “type =") can be duplicated multiple times. The sub-blocks within
MOOSE or Rattlesnake dump files are given the same name as “type”. There are a few exceptions, such as the
sub-block for TransportSystems which uses “scheme =" instead of “type =”. The names created by the user are
also recognized in other parts of the input file.

The most commonly used blocks in MOOSE are shown below along with one for Rattlesnake. Since, these are
main level blocks, the names need to be spelled exactly the same, including capitalization.
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[Mesh]
[Variables]
[Kernels]
[BCs]
[AuxVariables]
[AuxKernels]
[Functions]
[Materials]
[Postprocessors]
[Executioner]
[MultiApps]
[Transfers]
[Outputs]

[TransportSystems] for RattleSnake

To view possible options for each of these blocks use

./rattlesnake-opt --dump BlockName

where BlockName is the block such as "Mesh”. A file can also be saved with all the options from the dump by
using the command

./rattlesnake-opt --dump >& filename.txt

where filename.txt is the name for the file to be created.

2.5.1 Mesh

[Mesh]

The Mesh block is used to specify the finite elements and define boundaries that are used for boundary con-
ditions in the [BCs] block. A ”block”, as seen in the above example, is used by other parts of the input file to
specify certain portions of the mesh. The block regions are defined in the subdomain of the mesh. One should
note that the name block is not used in the mesh branch but is used in other parts of the input file to spec-
ify which sub-domain is being used. When specifying multiple blocks together it is required to use a vector
represented by single quotes (" ’). For example (block = "4 7 10").

Surfaces used for boundary conditions are defined automatically by mesh generators or can be manually cre-
ated, such as side sets in an exodus file. When using the mesh generator the boundaries are located at the
outside boundaries and are given names like "left right top bottom front back’, however they can also be num-
bered "1 2 etc.”.

For complicated geometries a mesh program like cubit might be required to create the finite element structure.
For more information on building a mesh refer to Sec. 6.

Below are two example mesh blocks. The first uses a mesh generator to create a 1-D mesh used for the 16A1-1
benchmark. Notice that the subdomain_id contains elements 1-7. Other parts of the input file will refer to these
sub domains by the “block = ” option and will use 1-7 to identify the sub-domain to which the input file option
applies to.

The second mesh block loads in a file with the mesh. It also doubles the number of mesh points in the file by
using the uniform_refine = 1 option.
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[Mesh]

type = CartesianMesh

dim = 1

dx 740 47.374 9 34 9 47.374 40°

ix ’20 24 5 16 5 24 20°

# subdomain_id are the regions of the mesh.

subdomain_id = ’1 23 45 6 7’

# dx is the width of each subdomain_id

# ix is the number of mesh intervals to place within each dx.
# Boundary surfaces ’right left’ are automatically created.
uniform_refine = 0

(1

[Mesh]
file = ../../Filename.e
uniform_refine = 1

(1

2.5.2 Variables

[Variables]

The Variables block is used to define the primal variables for the problem. These are the variables that are
solved for in the differential equations and need to be spatially dependent.

Suggestions when classifying the variable for the input file:

1. If the problem you are solving does not have space as a variable you might need to use [ScalarVariables]
and [ScalarKernels].

2. If the quantity you are after is a derived quantity where the spacial dependance has been integrated out
you might need to use a post-processor.

3. If the variable is dependent on space but is not directly used in the main variable equation or depends on
the primal variable or is discontinuous, it might need to be defined as an AuxVariable. Reaction rates are
typically AuxVariables because of discontinuity in space.

4. The Variables block is only for primal variables that are part of the differential equation, meaning that
there must be some differential of the variable in the equation.

In the input the primal variable shape function must be continuous. A common type is Lagrange. MOOSE
allows for multiple variables to be coupled with little effort, this is known as multi-physics coupling. These
variables can be solved for with various schemes. As a cautionary note, when multiple physics are coupled
one might need to use the “scale=" option if the magnitudes of the variables are greatly different. It has been
observed in Rattlesnake that scaling was required when coupling between the scalar flux and temperature for
one particular application.

Below is an example of a variable being defined. Note that units are up to the user and should workout as long
as the user maintains consistency based on the equations.

[Variables]
[./Tfuell
order = FIRST
family = LAGRANGE
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scaling = le-4
block = ’101 102’
[./InitialCondition]
type = ConstantIC
value = 300.0
[../]
[../]
[
# Tfuel was named by the user.
# family: sets the type of shape function to use for the solve over the finite elements in the mesh.
# Most common family option is Lagrange for primal variables since they need to be continuous.
# order: sets the order of polynomial for the shape function.
# scaling: changes the tightness of the solve (ie. residuals) to other variables
# scaling is usually not used and is defaulted to 1.
# block: sets the mesh locations to define the Tfuel variable.
# [./InitialCondition] is a sub-block named by the user
# The sub-block uses the ConstantIC functionality
# The Tfuel variable is set to 300 on every element within blocks 101 and 102 on the mesh.
#
#
#
#

Units are arbitrary in MOOSE
Users define the units and needs to stay consistent in definitioms.

2.5.3 Kernels

[Kernels]

The Kernels block is where the physics/equations are created. The convention in MOOSE is to define a ker-
nel to represents each part of the equation that can be separated by addition or subtraction operators. In this
way, parts of the equation may be included/excluded very easily. Further, the source code is defined so that
all kernels are on the left hand side of the equation. Thus, all terms sum to zero for the solve. An exam-

6
ple of a simple point kinetics model would be: d';—gt) - p(t)Tfﬁ — Y. Ci(t)A; = 0. Where each of the the terms
i=1

dn(t)
dt

6
, p(t)%, Y. Ci(t)A; are kernels. Kernels can be defined to include a grouping of several terms but by con-
i=1

vention they are individual terms. The finite element method used in MOOSE is to transform the equation to
the weak form. To keep things simple, the main implication here is that if there are any diffusion terms like
(VkV) a boundary condition is created and needed in the input file. The equations can also be specified to
apply to only certain parts of the mesh by using the blocks option. The kernels are pre-developed by MOOSE or
other development teams such as Rattlesnake. The dump file can provide a listing of available kernels. One ma-
jor disadvantage is that many of the kernels require opening the source C++ files to understand the operations
it performs.

Example kernels are shown below in the Boundary Conditions section.

2.5.4 Boundary Conditions

[BCs]

The BCs block is used to specify the type of boundary condition, where the boundary condition is applied
and the associated value. The most common boundary conditions are Dirichlet (constant value) and Neumann
(constant derivative). The boundary conditions are specified on the mesh by the boundary which is defined in
the side sets for an exodus mesh file.

Below is an example of several kernels being setup for the heat equations and a boundary condition.
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[Kernels]
# Heat equation = -Delxk*Del*T - q + Cp*rho*dT/dt = 0
# Use Adiabatic Equation = Cp*rho*dT/dt -q = O (q is the source term)

#
[./HeatConduction] # Units [=] J/cm"3-sec = Watt/cm"3
type = HeatConduction # Kernel = Del*(thermal_conductivity)*Del*Temp
variable = Tfuel
block = ’101 102 103 104 105 106’
[../]
[./HeatStorage] # Heat Storage, units [=] Watt/cm"3
type = HeatConductionTimeDerivative # Kernel = cp*rho*dT/dt
variable =Tfuel
block = ’101 102 103 104 105 106’
[../]
[./HeatSource] # Heat Source, units [=] Watt/cm"3
type = CoupledForce # Kernel = -q, where q is another variable
v = ScaledPowerDensity
block = ’106’ # Heat generation only in the core
variable = Tfuel
[../]
1
[BCs]

# The BC exists because of the diffusion term Del*k*Delx*T
# If no BC is given the default is a NeumannBC condition (ie. dT = O at the boundary)
# The DirichletBC
[./TempBC]
type = DirichletBC
variable = Tfuel
boundary = ’1 2 3 4 5 6’
value = 300.0 # Units [=] Kelvin
[../]
(1

Note that each of the kernels for the heat equation involves the Tfuel variable even if temperature was not part
of the kernel, such as the HeatSource term. The variable is how MOQOSE is able to know which kernels are
linked together.

It is possible to define the kernel to apply to only certain parts of the mesh. For instance, the HeatSource term
is defined in one region “block = 106” while the diffusion and time derivative terms apply to the sub-domain
blocks 101-106. The HeatSource also depends on a user defined auxiliary variable “ScaledPowerDensity” which
is defined elsewhere.

Notice that the thermal conductivity (k), specific heat (Cp) and density (rho) parts of the heat equation were
not specified here. These are material properties and are specified in the [Materials] block. For this example,
the boundary condition was added because of the diffusion term (HeatConduction).

The surfaces for the BC’s are created in the mesh. When using a built in mesh generator the surfaces are
automatically defined and are given names ”left right top bottom front back”. For this particular example,
boundaries where created in a custom file and were assigned values 1-6 to represent the left, right, top, bottom,
front and back surfaces or wherever surfaces were needed for the problem. This example creates a dirichlet BC
which assigns a constant value at the boundaries 1-6.

Notice that the user applied comments to keep track of units.

One can easily modify this code to turn off the heat diffusion term to make the problem adiabatic or they can
turn off the time dependent term for a steady-state calculation. If the heat diffusion term is turned off there is
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no need for the boundary conditions.

2.5.5 AuxVariables and AuxKernels

[AuxVariables] and [AuxKernels]

The auxiliary variables and kernels are quantities that either do not have differentials and thus cannot be pri-
mary variables or the user wants to keep these variables from being explicitly coupled to other variables or the
variable needs to be discontinuous. An example of discontinuous variables are reaction rates. The reaction rate
is discontinuous because the cross-sections instantly change when crossing between materials. The Monomial
shape functions are commonly used for discontinuous variables. Just like Variables and Kernels the block setup

is similar for AuxVariables and AuxKernels.

[AuxVariables]

1

[./CR_Boron]
order = CONSTANT
family = MONOMIAL
[./InitialCondition]
type = ConstantIC
value = 6.700E-04

[../]
[../]
[./ScaledPowerDensity]

# ScaledPowerDensity [=] Watts/cm"3
order = CONSTANT
family = MONOMIAL

[../]

[./IntegralPower]
# IntegralPower [=] Joules/cm”3
order = CONSTANT
family = MONOMIAL

[../]

[AuxKernels]

[./ScaledPowerDensity]
type = ReactionRateAux # (Variable is dependent on space)
variable = ScaledPowerDensity # Units [=] Watts/cm"3
# This cross_section*scalar_flux is the UnscaledPowerDensity
cross_section = kappa_sigma_fission
scalar_flux = ’sflux_g0 sflux_gl sflux_g2 sflux_g3
sflux_g4 sflux_gb sflux_g6 sflux_g7
sflux_g8 sflux_g9 sflux_gl0’
normal _factor = 910.0 # Starting Power [=] Watts
normalization = UnscaledTotalPower # Uses a post-processor not AuxVariable
block =106 107 6006 6007 6008’
execute_on = linear

ScaledPowerDensity gets the value of

"normal_factor" divided by the postprocessor value "UnscaledTotalPower".

#
#
#
# ie. normal_facotor/mormalization -> PO/integral (unscaledPowerDensity(vol,t)dV).
#
#

Flux_g_i is the coupling variable for ScaledPowerDensity that is changing
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# in the transient. The postprocessor UnscaledPower no longer changes for
# the transient and stays as its inherited value from the SS calc.
#

[../]

[./Powerintegrator]
# Units [=] Joules/cm”3 (Variable is dependent on space)
Integrates the variable ScaledPowerDensity w.r.t. time
ie. Integral(PowerDensity(Vol,t)*dt)
If the flag "use_as_density" is false then multiply by volume in the integral
ie. Integral(PowerDensity(Vol,t)*dV*dt) if "use_as_density" = False
No dV term if the flag "use_as_density" = true

H O H H OH R

type = VariableTimeIntegrator

variable = IntegralPower # Units [=] Joules/cm”3
variable_to_integrate = ScaledPowerDensity # Units [=] W/cm~3
coefficient = 1.0

block =106 107 6006 6007 6008’

execute_on = linear

use_as_density = true # this makes the variable as energy density (J/cm”3)
# Use_as_density: False multiplies by volume and True does not include it.

[../]

[./SetCRBoron]
type = FunctionAux
function = BContent
variable = CR_Boron
execute_on = timestep_end
[../]
(1

In the above example, there are 3 AuxVariables. The AuxVariables are using the Monomial shape functions
which are discontinuous as opposed to the Lagrange family which is continuous. The equations governing
the AuxVariables are found in the AuxKernels portion. The AuxKernels may involve other variables or post-
processors; for example the ScaledPowerDensity kernel depends on a post-processor (UnscaledTotalPower)
and the scalar flux primal variables (sflux_g0 through sfulx_gl0).

For every kernel, it must be told which variable it applies to, this is set with the ”variable =" option. For this
example, a diffusion calculation is being performed instead of transport and the variables for the scalar flux are
given a different naming scheme then the scalar flux coming from a transport calculation. The naming scheme
is sflux for diffusion and flux_moment for transport.

The PowerIntegrator kernel is integrating the auxiliary variable ScaledPowerDensity with respect to time,
making the IntegralPower variable still a function of space. The SetCRBoron kernel is implementing a function
to govern the value for the CR_Boron AuxVariable. The function usage will be explained in the next section. The
code here tells the kernel to point to the function BContent and assign the variable CR_Boron the value coming
from the function.

2.5.6 Functions

[Functions]

The Functions block is used to specify functions to be used by variables, materials and post-processors. There
are several function types available. View the dump file for more options. Below is an example where three
functions are setup.

[AuxVariable]
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[./CR_Boron]
order = CONSTANT
family = MONOMIAL
block = 101 102’
[./InitialCondition]
type = ConstantIC
value = 6.700E-04

[../]
[../]
1
[AuxKernels]

[./SetCRBoron]
type = FunctionAux
function = BContent
variable = CR_Boron
execute_on = timestep_end
[../]
(1

[Functions]
[./BContent]
type = PiecewiselLinear
x = 0.0 0.05 0.65 30.0’
y = ’6.700E-04 6.700E-04 1.3881E-07 1.3881E-07’
[../]

[./set_k]
type = ParsedFunction
value = ’8.21E-5*t*t-1.943E-04*t’  # Units [=] W/cm-K
# ParsedFunction to set the value for k (thermal-conductivity) as a function of temperature
# temp =Tfuel is used by HeatConductionMaterial to use in the function instead of t (time)
[../]
[./TotalFlx_function]
type = ParsedFunction
value = ’(F1 + F2)/Norm’

vars = ’F1 F2 Norm’
vals = ’Fluxl Flux2 NormalizationFlux’
[../]

1

Included before the functions block are blocks for the AuxVariables and AuxKernels. The codes shows how
they all rely on one another. The first function controls the boron concentration. For this example, the CR_Boron
is the variable and is defined on the mesh at blocks/subdomain numbers 101 and 102. The value given to
CR_Boron is initially given as 6.7E-4 but changes according to the function BContent which is a piecewise linear
function where "X’ represents a point in time and ”y” is the value for CR_Boron. The value for boron will linearly
change between times steps 0.05 and 0.65 sec. The kernel SetCRBoron tells the variable CR_Boron which function

to use and when to execute.

The second function is creating a polynomial to describe the thermal conductivity property, which is found
in the material block. The ParsedFunction develops a polynomial that can depend on space (x,y and z) and
time (t). For this particular case the developers had to use t, to represent temperature and a special adaptation
was made in the source code for a sub-block within the Materials block to change the variable from time to
temperature.

The third function shows how the ParsedFunction is normally used. In this example there are three inputs
value, vars and vals. The value represents the equation to be built. The vals are the names of the variables/pa-
rameters coming from other parts of the input file. For this case the vals are coming from post-processors. The
vars are a convenient way to set the variable name in the equation without using the variable name as defined
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in other parts of the input file. The vals get the value of the corresponding vals based on order within the vector.

2.5.7 Materials

[Materials]

The Materials block is use to define materials, their properties and mesh blocks that use those properties. An-
other block called [YAKXSLibraries] is used to load in files with cross-section definitions to be used within the
materials block.

An example block for thermal conductivity, specific heat and density is shown below.

[Materials]
[./ThermalProperties]
type = HeatConductionMaterial
temp = Tfuel

# temp tells the function to replace the time variable (t) with the variable it is set equal to (Tfuel)

# temp is only used if we are using a function of temperature
# Set_k is the function for thermal-conductivity
thermal_conductivity_temperature_function = Set_k # Units [=] W/cm-K
specific_heat = 5.8 # Units [=] J/g-Kelvin
block = ’101 102 103’

[../]

[./density]
type = Density

density = 10.3 # Units [=] g/cm~3
block = 101 102 103’
[../7]

1

In this example the thermal conductivity is a function of temperature and specified in the functions block.
The temp = Tfuel provided a special adjustment so that the function could take in temperature instead of
time. The kernels used in the prior example had hard coded names for thermal conductivity, specific heat and
density. The material sub-block had to use the exact same name as those hard-coded names in the kernels. The
HeatConductionMaterial and Density materials sub-block provided these names.

Below is an example of cross-sections being created using the ConstantNeutronicsMaterial sub-block for a 2
energy group transport problem with delayed neutrons.

[Materials]
[./Mat1]
type = ConstantNeutronicsMaterial
block = ’1 7’

fissile = true
#
# x-sections
#
nu_sigma_f = ’8.3441E-4 3.2776E-4’
# nu_sigma_f is the fission cross-section for each energy group
sigma_t = ’2.411E-1 4.172E-1°
# sigma_t is the total cross-section for each energy group
sigma_s = ’2.33644E-1 0.0
3.598E-3 4.07004E-1’
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# sigma_s is the scattering matrix: sigma_1->1, 2->1, 1->2, 2->2
chi ="’10’
# chi is the fraction of prompt neutrons that appear in each energy group

# Delayed properties
decay_constant ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’

delay_spectrum = ’1 0
10
10
10
10
10
# delay_sepectrum is the delayed neutron spcectrum for Xd_g_i = Xd_1_1, Xd_2_1 ... Xd_1_6, Xd_2_6

# It’s the spectrum at each energy group and for each delayed group
# (energy group first followed by delayed group)
neutron_speed = ’540248514.31659 91911764 .705882’
# Units [=] cm/sec
[../]
N

2.5.8 Postprocessors

[Postprocessors]

The Postprocessors block provides the user a location to perform calculations for derived quantities from
variables or other post-processors. Post processors may also use functions from the Functions block. They
can also be used to catch a value. Some of the common post-processors are: Integrals with respect to space,
functions, maximum/minimum value, receiver.

Below shows several post-processors and associated blocks that communicate with it.

[Postprocessors]
[./Flux1]
type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_gO_LO_MO
execute_on = ’initial linear nonlinear timestep_end’
[../]
./Flux2]
type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_gl_LO_MO

—/

execute_on = ’initial linear nonlinear timestep_end’
[../]
[./TotalFlx_Fun_PP]

type = FunctionValuePostprocessor
function = TotalFlx_function

execute_on = ’initial timestep_end’
[../]
[./NormalizationFlux]

type = Receiver
outputs = none
execute_on = ’initial’
[../]
(0
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[Functions]
[./TotalFlx_function]
type = ParsedFunction
value = ’(F1 + F2)/Norm’

vars = ’F1 F2 Norm’

vals = ’Fluxl Flux2 NormalizationFlux’
[../]
(1
[Transfers]

[./Copy_NormFlux_PP]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = maximum
from_postprocessor = TotalFlx_Fun_PP
to_postprocessor = NormalizationFlux
multi_app = initial_solve
execute_on = initial

[../]

1

In the above example, the first two post-processors are performing integrals with respect to space on the
scalar flux primal variables flux_moment for group 0 and 1. The third post-processor points to the function
TotalFlx_function and catches the output value. The function uses the other three post-processors to calcu-
late its value. The forth post-processor catches a single value that is coming from a transfer between another
application. MultiApps and Transfers are explained in the coming sections. For this example, the value is a
normalizing constant determined from an eigenvalue calculation.

2.5.9 Executioner

[Executioner]

The Executioner block is used to set tolerances for the solver, solver method, type of solve and other details
related to the timestep and solver. When using Rattlesnake the most common types of solves are going to
be NonlinearEigen or Transient. Below are two examples of the executioner, the first is for an eigenvalue
calculation and the second is a time dependent/transient problem. The PETsc options are also specified in the
executioner.

[Executioner]
type = NonlinearEigen
solve_type = ’PJFNK’
#PJFNK - Preconditioned Jacobian-Free Newton Krylov
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

1

[Executioner]
type = Transient
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

start_time = 0.0
end_time = 10
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1_tol = 1e-8
nl_rel_tol = le-6
timestep_tolerance = 1E-5
#
[./TimeStepper]
type = FunctionDT
time_dt = ’2E-8 1E-6 1E-5 1E-4 1E-3’
time_t = ’0 1E-3 1E-1 1 10’
[../]
1

2.5.10 MultiApps and Transfers

[MultiApps] and [Transfers]

The multi-app and transfers blocks are the means by which other input files and applications can be started
and then the data can be brought back and used by the main application. In Sec. 3.3.2 the multi-app was used
to calculate the eigenvalue and the transfers block was used to transfer the desired results over to the transient
problem.

Below is an example code for the multi-app, transfers and associated blocks.

[MultiApps]

[./initial_solve]
type = FullSolveMultiApp
app_type = RattlesnakeApp
execute_on = initial
positions = ’0 0 O’
input_files = SS-Rev2.i

[../]
(1
[Transfers]

[./copy_solution]
type = MultiAppSystemCopyTransfer
direction = from_multiapp
multi_app = initial_solve
execute_on = initial
scale_with_keff = false

[../]

[./Copy_NormFlux_PP]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = maximum
from_postprocessor = TotalFlx_Fun_PP
to_postprocessor = NormalizationFlux
multi_app = initial_solve
execute_on = initial

[../]
1
[Postprocessors]

[./NormalizationFlux]
type = Receiver
outputs = none
execute_on = ’initial’
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1

In the above example, the multi-app initiates the eigenvalue solve for the specified input file “SS-Rev2.i” during
the initial time step and used the Rattlesnake application. After the solve the data is transferred over with the
Transfers block. The first sub-block is a system copy transfer and will transfer all the variables between the
eigenvalue calculation and the transient. The transient uses the eigenvalue in the production term of the trans-
port equation for its solves. The second transfer is used to record a post-processor value from the eigenvalue
calculation to a post-processor in the transient calculation. The post-processor was created to simply catch the
value and hold it so that other calculations could be normalized to it.

2511 Outputs

[Outputs]

The Outputs block is used to determine the data file format and when to export data. The example codes below
create two files with the name Tr_out with the difference being their extension. The first is a comma separated
value (.csv) and will report the scalar values such as post-processor values and the second is an exodus (.e)
file and will contain all the information from the calculation, including the spacial dependent variables. The
csv files are universal and provide a convenient means of looking at integral data quickly. The exodus files
can become very large but can be used to generate 3D views of the data. The second example shows how one
could record the data at only specified moments in time. Other file formats also exist. Individual values are not
turned off in the outputs block, that is controlled in the block where the value is defined. For instance, in the
previous code the post-processor had the option ”outputs = none” which turned off the reporting of the value.

[Outputs]
file_base = Tr_out
csv = true
exodus = true

(1

[Outputs]
execute_on = ’timestep_end’
file_base = Tr_out

[./csv]
type = CSV

sync_only = true
sync_times = ’0 2e-8 le-7 1le-6 0.00001 0.00002 0.00004 0.00006 0.00008’°
[../]
[./exedus]
type = Exodus
sync_only = true
sync_times = ’0 3e-8 3e-7 3e-6 0.00003 0.00005 0.00007 0.00009°
[../]
0

2,512 TransportSystems

[TransportSystems]
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The TransportSystems is the block where a majority of the neutronics physics are setup. Inside of this block is
where the number of energy groups are specified, boundary conditions are set, particle type is chosen and the
scheme is setup. The scheme is a a sub-block of transport systems and the general differences were explained
in Sec. 1. The capabilities of the schemes are repeated below in Table 2.

Table 2 The capability of schemes.

Mathematical Thermal
Scheme adjoint Neutron | radiation | Transient | Multiscale

CFEM-Diffusion Y Y Y Y Y
DFEM-Diffusion N Y N Y N
SAAF-CFEM-SN Y Y Y Y Y
SAAF-CFEM-PN N Y N Y Y
LS-CFEM-SN N Y N Y N
LS-CFEM-PN N N N N N
DFEM-SN Y Y N Y N
DFEM-PN N N Y N N

Below are examples of TransportSystems codes for a transient and eigenvalue problems with two energy groups
(ie. G = 2). The particle type was set to neutron which enables neutron specific options within the scheme (like
n_delay_groups). The vacuum boundary is referring to surfaces that were setup in the mesh block. The scheme
sub-block setup other options such as the number of angles.

[TransportSystems]
particle = neutron
equation_type = transient
G =2
VacuumBoundary =’1 2’
[./sN]
scheme = SAAF-CFEM-SN
family = LAGRANGE
order = FIRST
AQtype = Gauss-Chebyshev
NPolar = 8
n_delay_groups = 6
fission_source_as_material = true
[../]
[

[TransportSystems]
particle = neutron
equation_type = eigenvalue
G =2
VacuumBoundary =’1 2’
[./sn]
scheme = SAAF-CFEM-SN
family = LAGRANGE
order = FIRST
AQtype = Gauss-Chebyshev
NPolar = 8
n_delay_groups = 6
fission_source_as_material = true

[../]
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[

The following example changes the scheme to a PN calculations instead of a SN calculation.

[TransportSystems]
particle = neutron # Solving the transport problem using the neutron equation
equation_type = eigenvalue # Doing an eigenvalue type problem for Steady State
for_adjoint = false # Non-adjoint weighted

# Number of energy groups
G =2

# Boundary Condition
VacuumBoundary =’1 2’

[./sN]
scheme = SAAF-CFEM-PN
family = LAGRANGE
order = FIRST
PN = 12 # PN option

n_delay_groups = 6 # added because of "partical = neutron"
fission_source_as_material = true # added because of "partical = neutron"

[../]
1

2.6 When encountering problems

2.6.1 Debug input block

The following is generated by

>./rattlesnake-opt --dump Debug

[Debug]
show_actions =0 # Print out the actions being executed
show_material_props =0 # Print out the material properties supplied
# for each block, face, neighbor, and/or sideset
show_parser =0 # Shows parser block extraction and debugging
# information
show_top_residuals =0 # The number of top residuals to print out
# (0 = no output)
show_var_residual_norms = 0 # Print the residual norms of the individual
# solution variables at each nonlinear iteration
show_var_residual = # Variables for which residuals will be sent to
# the output file
boundary = # The side sets boundary converge check is
# targeting for, none means all side sets
check_boundary_coverage = 0 # Check if all boundary sides are covered by side
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# sets
domain = # The blocks boundary coverage check is working
# on, none means all blocks
print_block_volume =0 # Print the volumes of blocks
show_petsc_options =0 # Print PETSc options obtained via PetscOptionsGetAll

1

2.6.2 Check your mesh

If your mesh is not generated by the build-in mesh generators, it is highly recommended to check your mesh
with the mesh checker provided by INSTANT, which is under yak/contrib/instant.

You will need to first make INSTANT by doing

>cd yak
>make instant -j4

A few executables will be generated under yak/contrib/instant. One of them, instant_mesh_generator-opt, is the
INSTANT mesh generator which can be used as a checker with the following input file:

<task type="modification" dim="$dim$">
<input>$input_exodus_file$</input>
<output>$output_exodus_file$</output>
</task>

Users are required to specify the dimension of the mesh $dim$, either 2 or 3, and the input exodus file $input_exodus_file$
and the output exodus file $output_exodus_file$. The input and output file name need to be different. The

mesh check will print messages on the screen showing the progress of checking and generate a text output file

Exodus _utilities.outp, in which detected errors, if there is any, will be listed.

2.6.3 Run your problem in debug mode

First you will need to create an Rattlesnake executable, rattlesnake-dbg, in debug version with

>METHOD=dbg make -j8

If you are using Mac, run your problem with

11db -- ./rattlesnake-dbg -i <InputFile>

For Linux, use

gdb --args ./rattlesnake-dbg -i <InputFile>
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After the lldb or gdb prompt shows up, set a break point on the Rattlesnake internal error handler with

b libmesh_terminate_handler

then run

To obtain a back trace of the calling stack use

bt

The back trace can typically give you a clue on what could be wrong. We would typically ask you for the back
trace when you cannot find the problem and need further assistance.

2.6.4 Ask questions on our user forum

(User forum is to be set up.)

2.7 Getinvolved

All users can create new issues or leave comments on the Rattlesnake gitlab page. To gain access to the
source code, you need to have at least a reporter level. You can ask for this level of access by contacting
the Rattlesnake developers and provide justification. If you made changes in your version of Rattlesnake
and think these changes are useful, we encourage you to send these changes as merge requests (MR) for re-
view and to be merged into the main Rattlesnake repository. You will have to gain developer access to do
so. We have a strict rules/procedures for how Rattlesnake can be changed. We also enforce a set of cod-
ing styling rules for Rattlesnake. Getting familiar with these rules can save time during the reviewing pro-
cess of your MR. We are basically following the MOOSE development procedure, which can be found at
http://mooseframework.org/wiki/Contributing/.
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3 Tutorial: Example input files

3.1 Kobayashi benchmark

This is a simple one-group source problem with void. All files necessary for running this tutorials with Rat-
tlesnake are under "rattlesnake/tutorials/Kobayashi’ folder.

3.1.1 Problem description

Plane geometries and a sketch of the problem are shown in Fig. 1 as the third problem in [3], which is called
the dog leg void duct problem. Reflective boundary conditions are used at the boundary planes x = 0,y = 0
and z = 0, and vacuum boundary conditions at all outer boundaries. Cross sections and source strength in the
three regions are given in Table 3. Results can be either generated without the scattering or with the scattering

Table 3 Cross sections and source strength.

S h 2
Region | (n-cm=3.s71) | (cm™1) (em™1)
1 1 0.1 0 0.05
2 0 107 | 0] 05x107*
3 0 0.1 0 0.05

cross sections being the half of the corresponding total cross sections.

3.1.2 Mesh

The geometry of this problem is regular, so we can used CartesianMesh to generate a regular mesh covering the
geometry and to assign block IDs for different regions.

[Mesh]

type = CartesianMesh
dim = 3

dx = ’10 20 10 20’
dy = ’10 40 10 40’
dz = 10 20 10 20’
ix = 1’2 4 2 4&°

iy =’28 28’

iz =2 4 2 4°
subdomain_id = ’

1333
2333
2223
3323
3333
3333
3323
3333
3333
3333
3323
3323
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Figure1 Geometry of the Kobayashi benchmark.
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uniform_refine = 0
second_order = false

1

We will need more uniform refinements and possibly quadratic shape functions to reduce the spatial discretiza-
tion error.

3.1.3 Transport system with SAAF-CFEM-SN

There is no fission in this benchmark, so we use common particle for the transport system. We use level-
symmetric angular quadrature for the calculation. The spatial polynomial order is set to tri-linear (i.e. FIRST).

[TransportSystems]
particle = common
equation_type = steady-state

G=1

VolumetricSourceBlock = ’1°
VolumetricSource = ’1.0’
VacuumBoundary = ’right front top’

ReflectingBoundary = ’left back bottom’

[./saaf]
scheme = SAAF-CFEM-SN
AQtype = Level-Symmetric
AQorder = 8
order = FIRST
hide_angular_flux = true

[../]

1

The default stabilization parameter T = 0.5 for treating void is used. We will definitely need higher SN order
for reducing the angular discretization error of this problem. Typically for SN calculations, we do not care
much about the angular flux, so we use hide_angular_flux to hide all angular fluxes in the applicable outputs, for
example, in the Exodus output file.

3.1.4 Materials

It is proper to use the simple ConstantNeutronicsMaterial for this benchmark.

[Materials]
[./region13]
type = ConstantNeutronicsMaterial
block = ’1 3’
sigma_t = 0.1
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sigma_s = 0.0
# sigma_s = 0.05

[../]

[./region2]
type = ConstantNeutronicsMaterial
block = 2

sigma_t = 0.0001
sigma_s = 0.0
# sigma_s = 5e-5
[../]
[

The commented lines are used for switching calculations with the scattering.

3.1.5 Postprocessors

We will evaluate the L2 norm of the scalar flux and the scalar flux value at bunch of points required by the
benchmark.

[Postprocessors]
[./norm]
type = ElementL2Norm
variable = flux_moment_gO0_LO_MO
[../]

[}

./3A01]

type = PointValue

variable = flux_moment_gO_LO_MO
point = ’5 5 5’

[../]

./3402]

type = PointValue

variable = flux_moment_gO_LO_MO
point = ’5 15 5’

[../]

./3403]

type = PointValue

variable = flux_moment_g0_LO_MO
point = ’5 25 5’

[../]

./3A04]

type = PointValue

variable = flux_moment_gO_LO_MO
point = ’56 35 5’

[../]

./3A05]

type = PointValue

variable = flux_moment_gO0_LO_MO
point = ’5 45 5’

[../7]

. /34061

type = PointValue

variable = flux_moment_g0_LO_MO
point = ’5 556 5’

[../]

./3407]

type = PointValue

—

—/

[}

(o

—/

—
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variable = flux_moment_gO0_LO_MO

point = ’5 65 5’

../1
./3A08]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’56 75 5’

.. /1]
./3409]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’5 85 5’

/]
./3410]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’56 95 5’

.. /1]

./3B01]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’6 55 5’

/1]
./3B02]

type = PointValue

variable = flux_moment_gO0_LO_MO

point = ’15 55 5’

../]
./3B03]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’25 55 5’

. /]
./3B04]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’35 55 5’

../]
./3B05]

type = PointValue

variable = flux_moment_g0_LO_MO

point = ’45 55 5’

../1
./3B06]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’55 55 5’

.. /]

./3c01]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’5 95 35’

.. /]
./3C02]

type = PointValue

variable = flux_moment_gO_LO_MO

point = ’15 95 35’

../]
./3C03]
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type = PointValue
variable = flux_moment_gO0_LO_MO
point = ’25 95 35’
[../]
./3C04]
type = PointValue
variable = flux_moment_g0_LO_MO
point = ’35 95 35’
[../]
./3C05]
type = PointValue
variable = flux_moment_gO_LO_MO
point = ’45 95 35’
[../]
./3C06]
type = PointValue
variable = flux_moment_g0O_LO_MO
point = ’65 95 35’
[../]
[

—

—

[

3.1.6 Solver

Because there is no scattering or low scattering ratio (0.5) in this benchmark, it will be more efficient to use the
executioner performing source iteration instead of using the full PJENK solver. We still leave the parameters
for the full PJENK solver commented in the Executioner block. Because the discretization is CFEM based,
we choose the special executioner AMGUpdate. BoomerAMG [4] is used in this executioner with the strong
threshold equal to 0.7. Because the out-going angular fluxes on the reflecting boundaries are lagged by one
iteration, we will need four source iterations to converge this problem even it does not have scattering.

[Executioner]
type = AMGUpdate
richardson_max_its = 10
richardson_abs_tol le-8

debug = true

amg_tol = le-3

amg_abs_tol = 1le-9
pre_pc_setup = false

type = Steady

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 10’
1_max_its = 50

nl_rel_tol = le-12

H H O OHH

3.1.7 Outputs

We want the Exodus [5] output for this benchmark for visualization. The Exodus file can be viewed by Vislt [6]
and ParaView [7]. We want the postprocessor values to be stored in a CSV (Comma Separated Values) file for
record.

[Outputs]
exodus = true
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print_perf_log = true
[./csv]
type = CSV
file_base = kobayashi_out
align = true
precision = 6
execute_on = timestep_end
[../]
(0

We want more control on the CSV output here by creating a csv sub-block. We want the names and the values
in the CSV file to be aligned for better readability. More precision than 6 digits is not needed. And we do not
need the values on initial (just zeros) to be outputted.

3.1.8 Results

We only presents results without scattering. To reduce the spatial discretization error, we uniformly refine the
mesh two times by adding the following command-line parameters

Mesh/uniform_refine=2

To reduce the angular discretization error, we use 524 level-symmetric quadrature with

TransportSystems/saaf/AQorder=24

The total number of unknowns with this setting is 121, 356, 144. The calculation was conducted on INL Falcon
cluster. 32 nodes each with 12 processors are required. The calculation can be finished in 9.67min with 4 source
iterations. We expect that the CPU time to be smaller with a dedicated algebraical multigrid method for SAAF-
CFEM-SN.

The results on x = z = 5cm, y = 55cm, z = S5cm and y = 95cm, z = 35cm are plotted in Fig. 2. Another angular
quadrature is also tried:

[TransportSystems]
[./saaf]
AQtype = Gauss-Chebyshev
NPolar = 12
NAzmthl = 16
[../]

1

Results are also plotted in Fig. 2.

3.2 Benchmark 16A1-1 (Eigenvalue Problem)

All files necessary for running this tutorials with Rattlesnake are under ‘rattlesnake/tutorials/16A1" folder.
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Figure2 Kobayashi benchmark results.
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3.2.1 Problem description

This example covers the calculation of the eigenvalue for the problem described in the 16A-1 benchmark which
can be found in Ref. [8]. The benchmark is a transient calculation. However, for illustrative purposes the
problem is being broken-up into two parts one for the eigenvalue and one for the transient. See Sec. 3.3 for the
transient part of the calculation.

Descriptive Title: Delayed Supercritical Transient; One-Dimensional, Two-Group Neutron Transport Problem
in a Fast Reactor

(This example only covers the eigenvalue calculation)

Description:

1. One-dimension (slab with azimuthal symmetry), two-group neutron transport theory
Seven zones

Isotropic scattering

Zero return current boundary conditions on external surfaces

Steady-state critical initial conditions

Six delayed neutron precursor groups

N o gk » DN

At t=0 sec, the density of the material in zone 2 increases by 5% and the material in zone 6 is decreased by
5%. (This will not apply until the transient calculation in Sec. 3.3.)

Table 4 Zones

Zone | Length(cm) | Number of Intervals

1 40 20
2 47.374 24
3 9 5

4 34 16
5 9 5

6 47.374 24
7 40 20

On the sides of zone 1 and 7 are vacuum. The blanket material is in zones 1 and 7. The core material is in zones
2,4 and 6. A mixture of sodium and control rod material is in zones 3 and 5.

Table 5 Cross-sections

Zone | Group 1/2}‘: Z‘tg 8 -8 8 =8
1,7 1 8.3441E-4 | 2.411E-1 | 2.33644E-1 | 3.598E-3
2 3.2776E-4 | 4.172E-1 | 4.07004E-1 0.0
2,4,6 1 7.4518E-3 | 1.849E-1 | 1.77711E-1 | 2.085E-3
2 1.1061E-2 | 3.668E-1 | 3.53721E-1 0.0
3,5 1 0.0 9.432E-2 | 8.571E-2 | 1.717E-3
2 0.0 1.876E-1 | 1.7131E-1 0.0

In Table 5 the second to last column is the scattering within a group while the last column is the scattering
between groups. For this case there is no up-scatter. The neutron speeds for this problem are given as 1/v; =
1.851x107%s/cm, 1/v; = 1.088x10~%s/cm. The prompt and delayed neutron spectra are identical with x; =
1.0and x, = 0.0.

63



Table 6 Delayed Neutron Parameters

Zone Bi A(sec™1)

1 0.81E-4 0.0129
6.87E-4 0.0311
6.12E-4 0.134
11.38E-4 0.331
5.12E-4 1.26
1.70E-4 3.21

NUl = WD

3.2.2 Mesh

The specifications for the desired mesh is given in Table 4. Since this problem is rather simple the CartesianMesh
generator may be used to create the mesh.

[Mesh]

type = CartesianMesh

dim = 1

dx = ’40 47.374 9 34 9 47.374 40°

ix = 20 24 5 16 5 24 20’
subdomain_id = ’1 23 456 7’

# dx is the width of each subdomain_id

# ix is the number of mesh intervals to place within each dx.
# Boundary conditions are ’right left’

#

uniform_refine = 0

# modify uniform_refine to 1 or 2 to check for convergence

1

In this code, the dim option refers to the number of Cartesian dimensions, dx is the spacing for each subdo-
main_id and ix is the number of intervals within each dx region. The subdomain_id is the specification for each
region. These sub domains are referenced in other parts of the input file (such as in the materials section) as
block = ’ ...’. The mesh generator also automatically generates boundary surfaces. For a 1-D case the only
boundary options are ’left right’. These are used in the TransportSystems block.

The uniform_refine option, can be used to automatically increase the number of elements in a mesh by refining
each region. When set to 0 refinement does not take place and the mesh is exactly the same as was specified
in the mesh generator. When refinement is set to 1 the number of mesh points are doubled. When refinement
is set to 2 the refinement doubles again and there are four times the number of mesh points then the original
mesh. Modifying the uniform_refine option is a convenient method to check for mesh convergence.

Additional dimensions may be add with the CartesianMesh using dy and dz with iy and iz for 3-D. The boundary
surface names used for boundary conditions are left, right, top, bottom, front and back. For more information
on building a mesh refer to Sec. 6.

3.2.3 Transport system

Transport systems is the branch that is used to setup the transport physics. Below is the code to setup.

[TransportSystems]
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particle = neutron # Solving the transport problem using the neutron equation
equation_type = eigenvalue # Doing an eigenvalue problem

# Number of energy groups
G =2
#
# Boundary Condition
# Boundary Conditions are created automatically by the mesh generator
VacuumBoundary =’left right’ # Zero Return on External Surfaces
#
#
[./8N]
scheme = SAAF-CFEM-SN
family = LAGRANGE
order = FIRST

#

# The remaining options depend on the scheme used

#

AQtype = Gauss-Chebyshev  # Angular quadrature type (It needs to be gauss-cheby for 1-D)
NPolar = 8 # Number of polar angles (polar because its 1-D)

NA =0 # NA is the maximum scattering anisotropy (0 for isotropic)

verbose = 2 # verbose is printouts

n_delay_groups = 6 # added because of "partical = neutron"
fission_source_as_material = true # added because of "partical = neutron"
[../]
1

This is a neutron transport problem so the particle = neutron. The equation type is eigenvalue, the number
of groups is 2 and the vacuum boundary needs to be located to the left of zone 1 and to the right of zone 7.
The options for VacuumBoundary can change based on the way the mesh was created. The mesh was generated
using the CartesianMesh generator and the for 1-D the key words are left and right.

The sub-branch is set using the scheme = SAAF-CFEM-SN which means that the calculation for the solve will
be using a self-adjoint angular flux formulation with the continuous finite element method and using the SN
method for angular treatment. One will note that the sub-block type is defined by scheme, which is different
than the normal MOOSE syntax "type = ". Other schemes could have been chosen as well such as SAAF-
CFEM-PN, LS-CFEM-SN or DFEM-SN for this eigenvalue problems. Because the particle is neutron, extra op-
tions become available in the scheme. These options are n_delay_group and fission_source_as_material.
The user can choose the shape function family and order. The most common is Lagrange, which is a continuous
function. Since this is a 1-D problem it is required to use a Gauss-Chebyshev for the angular quadrature type
and the number of polar angles needs to be chosen. For this problem, not many polar angles are required.

3.2.4 Materials

The materials block will setup the cross-sections and which zones will have those cross-sections. Below is the
code to generate one of the cross-sections and the rest will be added after this part of the code is explained.

[Materials]
[./Mat1]
type = ConstantNeutronicsMaterial
block = ’1 7°

fissile = true

#
# x-sections
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#
nu_sigma_f = ’8.3441E-4 3.2776E-4’
# nu_sigma_f is the fission cross-section
sigma_t = ’2.411E-1 4.172E-1°
# sigma_t is the total cross-section
sigma_s = ’2.33644E-1 0.0

3.598E-3 4.07004E-1"

# sigma_s is the scattering matrix: sigma_s: 1->1, 2->1, 1->2, 2->2
chi =10’
# chi is the fraction of prompt neutrons that appear in each group

# Delayed properties
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’

delay_spectrum = ’1 0
10
10
10
10
10
# delay_sepectrum is the delayed neutron spcectrum for Xd_g_i = Xd_1_1, Xd_2_1 ... Xd_1_6, Xd_2_6

# its the spectrum at each energy group and for each delayed group

# (energy group first followed by delayed group)

neutron_speed = ’540248514.31659 91911764.705882’

# Neutron speed is the inverse of the numbers provided for 1/vl and 1/v2.

[../]

0

We are using the ConstantNeutronicsMaterial sub-block within Rattlesnake and giving it the name Matl.
This material is going to be applied to the mesh at zones 1 and 7. The material contains fission cross-sections
sowe have fissile = true. We provide the cross-sections for nu_sigma_f, sigma_t and sigma_s, which are
fission, total and scattering respectively. The order is to provide the cross-sections for the first energy group
first. By convention the first energy group number is the highest energy group. Because C++ is a zero based
program the first index is zero instead of one. The scattering matrix involves iterating between g and then g’.
The option chi is the fraction of prompt neutrons that appear in each group. The delayed_spectrum also has
the same spectrum as chi, but with one for each group. The delayed neutron fraction and decay constants are
also defined. The delayed neutron options are not included for zones that do not include fissile material. The
neutron_speed is also the neutron speed for each group.

These pattern can be followed to develop the materials for zones 2,3,4,5 and 6. Since, this is an eigenvalue
calculation before the transient begins, zones 2,4,6 may be combined into one material definition. Or zones 2,
4 and 6 may be defined independently so that they can be copied and pasted into the transient file and all that
needs done is a modification to the cross-sections for zones 2 and 6.

Below is the full input for the materials block. Note that zones 3 and 5 (ie. block = ’3 5’) do not include
delayed options. In reality the neutron_speed is not needed for the eigenvalue equation but will be required
for the transient.

[Materials]
[./Mat1]
type = ConstantNeutronicsMaterial
block = ’1 7’

fissile = true
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#
# x-sections
nu_sigma_f = ’8.3441E-4 3.2776E-4’
sigma_t ’2.411E-1 4.172E-1°
sigma_s ’2.33644E-1 0.0
3.598E-3 4.07004E-1’
chi =1 0’
decay_constant
delay_fraction

’0.0129 0.0311 0.134 0.331 1.26 3.21°
’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’

delay_spectrum = ’1 0
10
10
10
10
10
neutron_speed = ’540248514.31659 91911764.705882’
[../]
[./Mat4]

type = ConstantNeutronicsMaterial

block = ’2 4 6’

fissile = true

#

# x-sections

nu_sigma_f = ’7.4518E-3 1.10612E-2’
sigma_t = ’1.849E-1 3.668E-1’
sigma_s = ’1.77711E-1 0.0

2.085E-3 3.53721E-1’
chi =1 0’
neutron_speed = ’540248514.31659 91911764.705882°

# Delayed properties
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’

delay_spectrum = ’1 0
10
10
10
10
10’
[../]
[./Mat3]

type = ConstantNeutronicsMaterial

block = ’3 5’

fissile = false

neutron_speed = ’540248514.31659 91911764.705882’

#

# x-sections

#

sigma_t = ’9.432E-2 1.8762E-1’

sigma_s = ’8.571E-2 0.0
1.7168E-3 1.7131E-1’
[../]
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3.2.5 Executioner

There are many options in the executioner to control tolerances. To perform the eigenvalue calculations a
simple code like the following would suffice. The most important part for the executioner is for the line
type=NonlinearEign. This command specifies the type of solve we are performing. Notice that the specifi-
cation for eigenvalue is in two locations. The executioner and TransportSystems.

[Executioner]
type = NonlinearEigen

#Preconditioned JFNK (default)
solve_type = ’PJFNK’

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’
free_power_iterations = 4

1

In the above code the solver type is the pre-conditioned Jacobian-Free Newton Krylov. The default is the
Jacobian-Free Newton Krylov (JENK). There are two PETSc options. PETSc stands for Portable, Extensible
Toolkit for Scientific Computing and provides data structures and routines for parallel solutions and is built
into MOOSE. One may wonder what petsc options to use. So, far the experience has been to just pick something
that works. The above code for the PETSc options have worked for many applications using Rattlesnake. The
free_power_iterations = 4 option is useful for eigenvalue calculations. The default value is 4. The free
power iteration method provides a convenient means of converging on an eigenvalue solution. The trade-off
are the number of free power iterations increases the computational time but provides a better convergence.
For calculations where the eigenvalue is not too important lower values like 2 may suffice. A typical value for
free power iterations is 2 to 6.

3.2.6 Outputs

In the outputs block the user can choose how to save the data and where to save. Since this is an eigenvalue
calculation all that is required is the ending eigenvalue. The value will be printed on the screen or to a job file
even if there are no output files. We can save all the information for every mesh point using the exedus = true
option. This will save an exodus file that can be opened using ParaView. ParaView is free to download from
Sandia National Laboratory. The csv option will also create a comma separated file for concise numbers. For
both the csv and exodus files they will be called by the file_base name test with the extension being .e for
exodus and .csv for the comma separated file.

[Outputs]
execute_on = ’timestep_end’
file_base = test
exodus = true
csv = true

[

3.2.7 Optional - (Postprocessors, AuxVariables, AuxScalarKernels and Functions)

This section is optional but may be very useful for learning many basic functions. As part of the official bench-
mark the normalized power history (ie. scalar flux vs time) is to be reported. This means that we need to
integrate the scalar flux with respect to space for both energy groups, add the fluxes together and use the result
from the eigenvalue calculation to normalize the values for the transient.
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First we want to integrate the scalar flux with respect to space. This calls for a post-processor. Below is a code
that will integrate the scalar flux (ie. flux moment) for both energy groups. The variables f1ux_moment_g0_L0_MO
and flux_moment_g1_LO_MO are automatically created from the TransportSystems block whenever one of the
transport schemes is chosen. The g0 or g1 portion refers to energy group0 or groupl. The results are two scalar
quantities Flux1 and Flux2. The integral is applying to mesh zones 1 to 7 which is indicated by block="1 .. 7°.

[Postprocessors]
[./Flux1]
type = ElementIntegralVariablePostprocessor
block = ’1 234567’
variable = flux_moment_gO_LO_MO

execute_on = ’linear nonlinear’
#outputs = none

[../]

[./Flux2]

type = ElementIntegralVariablePostprocessor
block = 1 234567
variable = flux_moment_gl_LO_MO
execute_on = ’linear nonlinear’
[../]
1

The reason for adding the execute_on = option will be explained further on but the meaning is when the
post-processor will be calculated. Go ahead and change the option to others such as 1linear, timestep_end,
timestep_begin, ’initial linear’ etc. Notice that the single quotes is not needed unless two or more op-
tions are used. Further, multiple execution time steps are allowed. Bear in mind that the sequence of execu-
tion is a switching between non-linear and linear solves. Therefore the execution process is timestep_begin,
nonlinear, linear and timestep end. There are also an option for initial. The outputs option has tem-
porarily been commented out to allow the user to understand how they can chose to have the post-processor
displayed on the screen and on the output file. Go ahead and add these post-processors to the input file and
run. Then change the execution_on and outputs options.

Now that we have the scalar flux for the entire core we need to combine the two values. There are multiple
methods that can be used to do this. Below one method will be shown. The plan will be to define a new variable
that will get the value of a function that adds the two post-processors together. The following code does just
this.

[AuxVariables]
[./TotalFlux]
family = scalar
order = first
#outputs = none

[../]
(1
[AuxScalarKernels]
[./TotalScalarFlux_kern]
type = FunctionScalarAux
execute_on = timestep_end
function = TotalFlx_function
variable = TotalFlux
[../]
(1
[Functions]

[./TotalFlx_function]
type = ParsedFunction
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value = ’F1 + F2’
vars = ’F1 F2’
vals = ’Fluxl Flux2’
[../]
(1

In the code above a new variable TotalFlux is defined. The type is scalar, since it is a single value and does
not depend on space. Given that the type is scalar the order takes on a new significance. When the variable
is dependent on space the order refers to the polynomial order of the shape function. In this case, the order
defines a vector size, which is one for our case. Just like the post-processors can be turned on/off by the outputs
option, so can variables.

The AuxScalarKernels is setup to be a function and apply to the variable TotalFlux. The kernel must also
know which function is going to be applied. That is why the user defined name is placed after function =.
The time step option was placed in the kernel to control when the calculation is performed.

The Functions block is set to be a parsed function. This type requires three parameters (vals, vars, and value).
The vals are the post-processors which have been named by the user Flux1 and Flux2 (see the Postprocessors
block). The value option is where the user defines the equation to be performed. You will notice that the
equation uses F1 and F2 not Flux1 and Flux2. The vars are used to define other variables names which are used
in the actual equation instead of the original variables. One advantage to this operation is so that the equation
can be defined by shorter variable names. The order in which the vars are entered corresponds to the order in
which the vals were entered.

Add the above code to the input file and run. Go ahead an change the names and experiment with the opera-
tions.

Now, one maybe wondering why not just use the default values for the execute_on feature. If you comment
out the execute_on feature, look at the values for Flux1, Flux2 and TotalFlux. Flux1l and Flux2 no longer add
to TotalFlux. The reasoning is that when the fluxes are added together matters and when the values for Flux1
and Flux2 are calculated matters as well. For instance, if the post-processors and the variable, TotalFlux, were
given an execution priority of time step end, then it would be possible for the post-processors to update after
the TotalFlux variable is updated, leading to a TotalFlux value that is based on the previous step. The question
becomes which blocks are executed first in MOOSE for a given execute_on command. For this particular
situation we really do not need to know but can get a good answer by keeping the post-processors up-to-date
as much as possible, instead of at the end of a solve where it might be updated after TotalFlux is updated. This
is why the option ‘linear nonlinear” was used (the option for timestep_end could have also been included).
While for the TotalFlux it was calculated at timestep_end.

Now we know that once we get to the transient calculation we will want to normalize by TotalFlux. We will
cover in the transient section how to transfer between the steady state eigenvalue calculation and the transient.
But for now will mention that in the transient calculation we want to modify the ParsedFunction to divide by
the total flux from the eigenvalue calculation. There is a problem if we try to mix the postprocessors values with
variable types. Conversion can take place but why make it complicated. How about we perform the calculation
in an alternative way.

Below are two post-processors that we could use to either transfer the TotalFlux variable to a post-processor
value or calculate the total flux directly into the post-processor using the function that was setup.

[Postprocessors]
#...
#...
#
# This Postprocessor (PP) will copy the AuxVariable TotalFlux to a PP value.
[./TotalFlx_PP]
type = ScalarVariable
variable = TotalFlux
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[..7]
#
#
# This PP will use the function TotalFlx_function to obtain its value.
[./TotalFlx_Fun_PP]
type = FunctionValuePostprocessor
function = TotalFlx_function
[../]
(1

If we use latter post-processor there is no need to use the aux-variable or aux-kernel blocks from the previous
code. Given that the second option is easier we will use that option. Keep in mind to check if the execution
sequence is correct by running the input file and checking to make sure Flux1 + Flux2 equals TotalF1x_Fun_PP.

3.2.8 Run the file

With the blocks Mesh, TransportSystems, Materials, Executioner and Outputs it is possible to run the code for
the eigenvalue. Below is the input with the required branches. You will notice the comments and a few lines
have been deleted or changed from the code given in each individual section. This was meant to test the reader
and shorten the text.

[Mesh]

type = CartesianlMesh

dim = 1

dx = 240 47.374 9 34 9 47.374 40’
ix = 20 24 5 16 5 24 20’
subdomain_id = ’1 23 456 7’
uniform_refine = 0

1

[TransportSystems]
particle = neutron
equation_type = eigenvalue

G =2
VacuumBoundary =’1 2’
[./8N]
scheme = SAAF-CFEM-SN
family = LAGRANGE
order = FIRST
AQtype = Gauss-Chebyshev
NPolar = 8

n_delay_groups = 6
fission_source_as_material = true

[../]
1
[Materials]
[./Mat1]
type = ConstantNeutronicsMaterial
block = ’1 7’

fissile = true

nu_sigma_f = ’8.3441E-4 3.2776E-4’

sigma_t = ’2.411E-1 4.172E-1°

sigma_s = ’2.33644E-1 0.0 3.598E-3 4.07004E-1’
chi =10’

neutron_speed = ’540248514.31659 91911764 .705882’
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# Delayed properties
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum ’1 01010101010’

[../]

—

. /Mat4]

type = ConstantNeutronicsMaterial

block = ’2 4 6’

fissile = true

nu_sigma_f = ’7.4518E-3 1.10612E-2’

sigma_t = ’1.849E-1 3.668E-1’

sigma_s = ’1.77711E-1 0.0 2.085E-3 3.53721E-1’

chi =1 0’

neutron_speed = ’540248514.31659 91911764 .705882’

# Delayed properties

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum =’1 01010101010’

[../]

—

./Mat3]
type = ConstantNeutronicsMaterial
block = ’3 5’
fissile = false
neutron_speed = ’540248514.31659 91911764 .705882’
sigma_t = ’9.432E-2 1.8762E-1’
sigma_s = ’8.571E-2 0.0
1.7168E-3 1.7131E-1’
[../]

1

[Executioner]
type = NonlinearEigen
solve_type = ’PJFNK’

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

0

[Outputs]

file_base = SS_out
exodus = true
csv = true

1

sy

Save the text file and give it a name with the extension ”.i”, such as test.i. To run the file use the command
below while in the folder with the input file:

./rattlesnake-opt -i <InputFile>
## Comment: For the example input file test.i use
./rattlesnake-opt -i test.i

Below is the input file with the optional blocks to obtain the total flux using post-processors which will be
used to normalize the flux from the transient. Notice that the GlobalParams block was added. This block is
a convenient way to place options or values that will be included many times over and shorten the code. For
this example the neutron speed is the only quantity that can be placed in every ConstantNeutronicsMaterial
sub-block and thus can be used in the GlobalParams block. For this example it is hardly worth using the
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GlobalParams block. But instead of copy and pasting many options over and over again this can be a good
alternative. The one catch is that since the parameters become global, you have to be careful you do not have a
sub-block that takes in the option and needs the value to be different than the one in the GlobalParams block.
Also, you will observe that zones 2 and 6 (ie. block =) have been separated away from zone 4 into their own
materials. That way we can easily copy and modify the cross-sections for the transient.

[Mesh]

type = CartesianMesh

dim = 1

dx = 240 47.374 9 34 9 47.374 40’
ix = ’20 24 5 16 5 24 20’
subdomain_id = ’1 23 456 7’
uniform_refine = 0

1

[GlobalParams]
neutron_speed = ’540248514.31659 91911764 .705882’
1

[TransportSystems]
particle = neutron
equation_type = eigenvalue

G =2
VacuumBoundary =’1 2’
[./8N]
scheme = SAAF-CFEM-SN
family = LAGRANGE

order = FIRST
AQtype = Gauss-Chebyshev
NPolar = 8
n_delay_groups = 6
fission_source_as_material = true
[../]
(d

[Functions]

[./TotalFlx_function]
type = ParsedFunction
value = ’F1 + F2’

vars = ’F1 F2’
vals = ’Fluxl Flux2’
[../]
(1
[Materials]
[./Mat1]
type = ConstantNeutronicsMaterial
block = ’1 7°
fissile = true
chi =10’
nu_sigma_f = ’8.3441E-4 3.2776E-4’
sigma_t = ’2.411E-1 4.172E-1°
sigma_s = ’2.33644E-1 0.0 3.598E-3 4.07004E-1’
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum =’1 01010101010’
[../]
[./Mat4]
type = ConstantNeutronicsMaterial
block = 4’
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fissile = true

chi =1 0°

nu_sigma_f = ’7.4518E-3 1.10612E-2’

sigma_t ’1.849E-1 3.668E-1’

sigma_s ’1.77711E-1 0.0 2.085E-3 3.53721E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum =’1 01010101010’

[../]
[./Mat2]
type = ConstantNeutronicsMaterial
block = 2’
fissile = true
chi =10’

nu_sigma_f = ’7.4518E-3 1.10612E-2’

sigma_t = ’1.849E-1 3.668E-1’

sigma_s = ’1.77711E-1 0.0 2.085E-3 3.53721E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum ’1 01010101010’

[../]
[./Mat6]
type = ConstantNeutronicsMaterial
block = ’6’
fissile = true
chi =10’

nu_sigma_f = ’7.4518E-3 1.10612E-2’

sigma_t = ’1.849E-1 3.668E-1’

sigma_s ’1.77711E-1 0.0 2.085E-3 3.53721E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum = ’1 01010101010’

[../]
[./Mat3]
type = ConstantNeutronicsMaterial
block = ’3 5’
fissile = false
sigma_t = ’9.432E-2 1.8762E-1’
sigma_s = ’8.571E-2 0.0 1.7168E-3 1.7131E-1’
[../]
0]
[Executioner]

type = NonlinearEigen
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’

petsc_options_value = ’hypre boomeramg 100’
(]
[Postprocessors]
[./Flux1]
type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_g0_LO_MO
execute_on = ’linear nonlinear timestep_end’
[../]
[./Flux2]

type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_gi_LO_MO
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execute_on = ’linear nonlinear timestep_end’
[../]
[./TotalFlx_Fun_PP]

type = FunctionValuePostprocessor

function = TotalFlx_function

execute_on = ’linear nonlinear timestep_end’
[../]
1
[Outputs]
execute_on = ’timestep_end’

file_base = SS_out
exodus = true
csv = true

1

The expected values to be obtained from the eigenvalue calculation are: eigenvalue = 0.999739, Flux1 = 1.345E+02,
Flux2 = 2.280E+01 and TotalFlux = 1.573E+02. You may also modify the code to change the cross-sections for
zones 2 and 6 to determine the change in the eigenvalue when the transient occurs. Zone 2 is increased by 5%
and zone 6 is decreased by 5%. The result for the eigenvalue is about 1.000854.

3.3 Benchmark 16A1-1 (Transient Problem)

The transient problem for benchmark 16A1-1 was defined in 3.2. To setup this problem we start by using the
same code given in 3.2.8 with the additional coding for post-processors and the function. We will need two files
to perform the transient. The first has the code from 3.2.8 for the steady-state eigenvalue and second one is for
the transient, both files should end with the ”.i” extension. Go ahead and copy the code from the eigenvalue
calculation into both files. We will now modify the code to have it perform the transient.

3.3.1 Changes from Eigenvalue to Transient File

First, change the equation type in the TransportSystems block to equal transient.

[TransportSystems]
# ...
equation_type = transient

# ...
0

Next, change the all the cross-sections in the materials block. If you do not have the materials for zones 2, 4
and 6 separated do so now in the transient file. The eigenvalue file can keep them together. Increase all the
cross-sections for zone 2 by 5% and decrease all the cross-sections for zone 6 by 5%. This is simulating a rod
movement. The code for the material changes is below.

[Materials]

# ...

# ...

[./Mat4]

type = ConstantNeutronicsMaterial
block = 4’
fissile = true
chi =10’
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nu_sigma_f = ’7.4518E-3 1.10612E-2’
sigma_t = ’1.849E-1 3.668E-1’

sigma_s ’1.77711E-1 0.0 2.085E-3 3.53721E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’

delay_spectrum = ’1 01 010101010’

[../]
[./Mat2]
type = ConstantNeutronicsMaterial
block = 2’
fissile = true
chi =10’

nu_sigma_f = ’7.82439E-3 1.161426E-2’

sigma_t = ’1.94145E-1 3.8514E-1’

sigma_s = ’1.8659655E-1 0.0 2.18925E-3 3.7140705E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum =’1 01010101010’

[../]
[./Mat6]
type = ConstantNeutronicsMaterial
block = ’6’
fissile = true
chi =10’

nu_sigma_f = °7.07921E-3 1.050814E-2’

sigma_t = ’1.75655E-1 3.4846E-1’

sigma_s = ’1.6882545E-1 0.0 1.98075E-3 3.3603495E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum ’12 01010101010’

Now, we will need to add a post-processor to become the normalizing flux value. The execution for the post-
processor using the function also changed. This will be explained later. You will notice that the Normalization-
Flux is type “Receiver” and does nothing else. The point here is to catch the value from the TotalFlx_Fun_PP
in the eigenvalue calculation.

[Postprocessors]
# ...

#

[./TotalFlx_Fun_PP]
type = FunctionValuePostprocessor
function = TotalFlx_function
execute_on = ’initial timestep_end’

[../]

./NormalizationFlux]

type = Receiver

#outputs = none

execute_on = ’initial’

[../]

[}

1
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Next, modify the function to be divided by the normalization flux.

[Functions]
[./TotalFlx_function]
type = ParsedFunction
value = ’(F1 + F2)/Norm’
vars ’F1 F2 Norm’
vals = ’Fluxl Flux2 NormalizationFlux’
[../]
(1

The Executioner block now needs to be modified by changing the type to transient and adding start and end
times for the calculation. More advanced features like tolerances and a time step function were added because
of issues associated with this benchmark. The 1_tol = is the tolerance for linear solves. The optionnl_rel_tol
is the tolerance for the nonlinear solves. The timestep_tolerance is added because we will demand the data
to be output at only certain times. An issue arrises when the previous time step is very close to, but not
exactly, on the demanded time. An unrealistic dt timestep is attempted which can cause the program to fail.
The timestep_tolerance will accept the present time step as the demanded time if within this tolerance. The
FunctionDT sub-block creates a function for the dt value. This particular problem demands a very small time
step at first then increases. This function follows a piece-wise linear formate. Where the time_dt vector is the
list of dt values, to interpolate between and time_t is the associated times.

[Executioner]
type = Transient
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

start_time = 0.0
end_time = 10

1_tol = 1e-8
nl_rel_tol = le-6
timestep_tolerance = 1E-5

[./TimeStepper]
type = FunctionDT
time_dt = ’2E-8 1E-6 1E-5 1E-4 1E-3’
time_t = ’0 1E-3 1E-1 1 10°
[../]
1
#
#
#
[Outputs]
execute_on = ’timestep_end’
file_base = Tr_out
[./csv]
type = CSV
sync_only = true
sync_times = ’0 2e-8 le-7 1le-6 0.00001 0.00002 0.00004 0.00006 0.00008
0.0001 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008
0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.81 246 8 10’
[../]
[./exedus]
type = Exodus
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sync_only = true
sync_times = ’0 2e-8 le-7 1le-6 0.00001 0.00002 0.00004 0.00006 0.00008
0.0001 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008
0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.81246 8 10’
[../]
(0

The Outputs sub-block was also modified by adding a sub-block for csv and Exedus files to specify only certain
points in time to record values instead of every time-step. To view the flux profile over time you will need to
look at the exodus file using Paraview. Specific times are chosen for the exodus file so that it does not take up a
lot of hard drive space.

3.3.2 MultiApp and Transfers

To be able to transfer information between the eigenvalue problem and transient problem we need to setup a
MultiApp and Transfers branch. The code is provided below and should be added to the transient file. The
only modification needed is to use your filename for the eigenvalue file in the MultiApps block.

[MultiApps]
[./initial_solvel
type = FullSolveMultiApp
app_type = RattlesnakeApp
execute_on = initial
positions = 0 0 O’
input_files = Eigenvalue_Filename.i

[../]
]
[Transfers]

[./copy_solution]
type = MultiAppSystemCopyTransfer
direction = from_multiapp
multi_app = initial_solve
execute_on = initial
scale_with_keff = false

[../]

[./Copy_pp_Flux0]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = minimum
from_postprocessor = Fluxl
to_postprocessor = Fluxl
multi_app = initial_solve
execute_on = initial

[../]

[./Copy_pp_Flux1]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = minimum
from_postprocessor = Flux2
to_postprocessor = Flux2
multi_app = initial_solve
execute_on = initial

[../]

[./Copy_NormFlux_PP]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
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reduction_type = maximum
from_postprocessor = TotalFlx_Fun_PP
to_postprocessor = NormalizationFlux
multi_app = initial_solve
execute_on = initial

[../]

[

In the code the first branch is MultiApps. This is a branch that allows several other programs to be executed. For
this problem, we are using the FullSolveMultiApp option and using the Rattlesnake application. If Rattlesnake
is just a sub-module to a larger application the larger application’s name would be placed here. The input file
name for the eigenvalue calculation also needs to be specified by the user.

The next branch is Transfers. The first sub-branch is a MultiAppSystemCopyTransfer. This sub-branch will
copy all the variables from the eigenvalue calculation to the transient model. The following sub-branches are
all post-processor transfers. You will note that while the post-processors and variables may have the same
names but they are not joined in the calculation until we use the Transfers block. With the system copy transfer
all variables defined in the transient must also be defined in the eigenvalue calculation. If they are not defined
in the eigenvalue file you will get a PETSc error saying that the vector local lengths are not equal. If you have
a variable in a transient file that you need, but it is not needed in the eigenvalue calculation, you can simply
define it but never perform any calculations with it.

The post-processor transfer, unlike the total system copy, allows us to specify which post-processor value from
the eigenvalue calculation gets assigned to which post-processor in the transient calculation. You will notice
that TotalF1x_Fun_PP post-processor in the transient calculation never gets a value from the eigenvalue calcu-
lation. We want this because it is now normalized and we don’t want the first value to be un-normalized. That
is also why the execution was set to initial for TotalF1x_Fun_PP in the transient calculation The Normalization-
Flux however gets the value of the TotalFlx_Fun_PP post-processor in the eigenvalue calculation. There is a
required option reduction_type which takes the possible inputs of “average, sum, maximum, and minimum”.
For our case the post-processors are single values and the choice does not matter.

3.3.3 Transient Code and Results

The entire transient code is found below. Make sure to change the name for the eigenvalue file (make sure there
are no spaces in the name).

[Mesh]

type = CartesianMesh

dim = 1

dx = 240 47.374 9 34 9 47.374 40°
ix = 20 24 5 16 5 24 20’
subdomain_id = ’1 2 3 45 6 7’
uniform_refine = 0

[

[GlobalParams]
neutron_speed = ’540248514.31659 91911764.705882’
[

[TransportSystems]
particle = neutron
equation_type = transient
G =2
VacuumBoundary =’1 2’
[./sN]
scheme = SAAF-CFEM-SN
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family = LAGRANGE
order = FIRST
AQtype = Gauss-Chebyshev
NPolar 8
n_delay_groups = 6
fission_source_as_material = true
[..7]
[

[Functions]
[./TotalFlx_function]
type = ParsedFunction
value = ’(F1 + F2)/Norm’

vars = ’F1 F2 Norm’
vals = ’Fluxl Flux2 NormalizationFlux’
[../]
0]
[Materials]
[./Mat1]
type = ConstantNeutronicsMaterial
block = ’1 7’
fissile = true
chi =10’
nu_sigma_f = ’8.3441E-4 3.2776E-4’
sigma_t = ’2.411E-1 4.172E-1°
sigma_s = ’2.33644E-1 0.0 3.598E-3 4.07004E-1’
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum = ’1 01010101010’
[../]
[./Mat4]
type = ConstantNeutronicsMaterial
block = 4’
fissile = true
chi =10’
nu_sigma_f = ’7.4518E-3 1.10612E-2’
sigma_t = ’1.849E-1 3.668E-1’
sigma_s = ’1.77711E-1 0.0 2.085E-3 3.53721E-1’
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum =’1 01010101010’
[../]
[./Mat2]
type = ConstantNeutronicsMaterial
block = 2’
fissile = true
chi =10’
nu_sigma_f = ’7.82439E-3 1.161426E-2’
sigma_t = ’1.94145E-1 3.8514E-1’
sigma_s = ’1.8659655E-1 0.0 2.18925E-3 3.7140705E-1°
decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum = 1 01010101010’
[../]
[./Mat6]
type = ConstantNeutronicsMaterial
block = ’6’

fissile = true
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chi =1 0’

nu_sigma_f = ’7.07921E-3 1.050814E-2’

sigma_t = ’1.75655E-1 3.4846E-1’

sigma_s = ’1.6882545E-1 0.0 1.98075E-3 3.3603495E-1’

decay_constant = ’0.0129 0.0311 0.134 0.331 1.26 3.21°
delay_fraction = ’0.81E-4 6.87E-4 6.12E-4 11.38E-4 5.12E-4 1.70E-4’
delay_spectrum ’1 01010101010’

[../]
[./Mat3]
type = ConstantNeutronicsMaterial
block = ’3 5’
fissile = false
sigma_t = ’9.432E-2 1.8762E-1’
sigma_s = ’8.571E-2 0.0 1.7168E-3 1.7131E-1’
[../]
(]
[Postprocessors]
[./Flux1]

type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_gO_LO_MO
execute_on = ’initial linear nonlinear timestep_end’
[../]
. /Flux2]
type = ElementIntegralVariablePostprocessor
block = ’1 234567
variable = flux_moment_gl_LO_MO

—

execute_on = ’initial linear nonlinear timestep_end’
[../]
[./TotalFlx_Fun_PP]

type = FunctionValuePostprocessor
function = TotalFlx_function

execute_on = ’initial timestep_end’
[../]
[./NormalizationFlux]

type = Receiver
#outputs = none
execute_on = ’initial’
[../]
(]

[MultiApps]

[./initial_solvel
type = FullSolveMultiApp
app_type = RattlesnakeApp
execute_on = initial
positions = 0 0 O’
input_files = SS-Filename.i

[../]
]
[Transfers]

[./copy_solution]
type = MultiAppSystemCopyTransfer
direction = from_multiapp
multi_app = initial_solve
execute_on = initial
scale_with_keff = false

[../]

[./Copy_pp_Flux0]
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type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = minimum
from_postprocessor = Fluxl
to_postprocessor = Fluxl
multi_app = initial_solve
execute_on = initial

[../]

[./Copy_pp_Flux1]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = minimum
from_postprocessor = Flux2
to_postprocessor = Flux2
multi_app = initial_solve
execute_on = initial

[../]

[./Copy_NormFlux_PP]
type = MultiAppPostprocessorTransfer
direction = from_multiapp
reduction_type = maximum
from_postprocessor = TotalFlx_Fun_PP
to_postprocessor = NormalizationFlux
multi_app = initial_solve
execute_on = initial

[../]
[
[Executioner]

type = Transient
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’
start_time = 0.0
end_time = 10
1_tol = 1le-8
nl_rel_tol = 1le-6
timestep_tolerance = 1E-5
[./TimeStepper]
type = FunctionDT
time_dt = ’2E-8 1E-6 1E-5 1E-4 1E-3’
time_t = ’0 1E-3 1E-1 1 10’
[../]
1

[Outputs]
execute_on = ’timestep_end’
file_base = Tr_out

[./csv]
type = CSV
sync_only = true
sync_times = ’0 2e-8 le-7 1le-6 0.00001 0.00002 0.00004 0.00006 0.00008
0.0001 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008
0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.81246 8 10’
[../]
[./exedus]
type = Exodus
sync_only = true
sync_times = ’0 2e-8 le-7 1le-6 0.00001 0.00002 0.00004 0.00006 0.00008
0.0001 0.0002 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.006 0.008
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0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.81246 8 10’

[

Figure 3 below, shows the normalized power history (ie. Normalized flux) from the benchmark and Figure
4 shows the flux profile at 0.0, 0.01 and 1.0 sec, normalized to 1 neutron/sec which is the same as dividing
by the eigenvalue. The flux profile in Rattlesnake is automatically normalized. To compare the flux pro-
file start by opening the exodus file in Paraview. Enable the variables on the vlux_moment_g0O_LO_MO and
vlux_moment_gi_LO_MO as shown in Figure 5. Then click on the "Plot over line” button which is shown in
Figure 6. A graph with the scalar flux for group 0 and 1 should appear. Next, right-click in the blank space on
the toolbar and click on "Time Inspector” and also ”Animation View”. The screen should look like Figure 7.
You can now step through time to view the scalar flux profiles and compare with the benchmark.
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Figure 3 Normalized Power History (Benchmark 16A1-1)
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Figure 4 Flux Profile at 0.0, 0.01 and 1.0 sec (Benchmark 16A1-1)
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3.4 Takeda benchmark Mode 4

This is a benchmark with hexagonal geometry. Periodic boundary condition will also be demonstrated. (To be
added after HexagonalMesh is completed.)

3.5 LRA benchmark (14-A1)

This is a two-group transient benchmark with temperature feedback. All files necessary for running this tuto-
rials with Rattlesnake are under 'rattlesnake/tutorials/LRA2D’ folder.

3.5.1 Problem description

It is a two-dimensional two-group neutron diffusion problem with adiabatic heat-up and Doppler feedback in
thermal reactor. It is a super prompt-critical transient. To have better understanding on the cross sections given
later, we present the equations here:

0 , . 2
—%% = —VD1V1 + (g1 + Zs12)1 (1) —v(1 = B) f(71) = ) AiGi(7, t), 1)
i=1
—Ul% = —VDyVy + Zaotn(7,t) — Tg1s0¢1, )
2
2
[ 1) = lef,g% 3)
g:
% = Vﬁif — /\Z-Ci(?, i’),i =1,2, (4)
AT(7,t)
= =uf, 5)
Zaa(Ft) = Za (7t = 0) [1+9 (VT - VT |, ©)
P(7,t) = «f, @)
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where ¢1, ¢, are the fast and thermal fluxes; v1, v; are the averaged neutron velocities; ¥, 1, » are the absorp-
tion cross sections; ¥ 1,7 is the fast-to-thermal scattering cross section; X¢ 1, % » are the fission cross sections;
v is the averaged number of neutrons emitted per fission; 1, B2 are the delayed neutron precursor fractions
and B = PB1 + B2; C1,C; are the delayed neutron precursor concentrations; A1, A, are the decay constants of
the delayed neutron precursors; f is the fission reaction rate; P is the power density; T is the temperature;
is the averaged power released per fission; « is the combination of x and the specific heat capacity; - is the
Doppler feedback coefficient; Ty = T(7,t = 0). The two-group diffusion equation are solved with zero flux
boundary conditions on external surfaces, reflecting conditions at symmetry boundaries and steady state initial
conditions which are obtained by solving

L . 12
—VDiV1 + (Zg1 +Zs152)1 (7 t) = % ) VEf o Pg, 8)
g:l
~VDyV1 + Zapa (7, 1) =Z515201. 9)
(10)

The eigenvalue k is used to modify the fission cross section for the transient simulations with %Z fe:8 = 1,2
The initial flux distribution shall be normalized such that the averaged power density

Jv.,, Pt =0)dr
fvcore d? '

where Ve, is the core region with fuels, is equal to 10~ ®W - cm 3. The initial precursor concentrations are in
equilibrium with the initial critical flux distribution.

pP=

(11)

The geometry is illustrated in Fig. 8.
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Figure 8 LRA benchmark geometry with region assignment.

Initial two-group constants are presented in Table 7. v is equal to 2.43. Axial bulking B> = 10~* is applied for
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both energy groups. Delayed neutron data are presented in Table 8. All fuel materials have the same delayed
neutron data. Some scalar data are listed in Table 9.

Table 7 LRA benchmark initial two-group constants.

Group Dg Za,g v f.q Y5152 Xg | vg

Region Material g (cm) | (em™b) (em™b | (em™) (cm-s~1)
1 Fuel 1 with rod 1 1.255 | 0.008252 0.004602 1 3.0 x 107
2 0.211 | 0.1003 0.1091 0.02533 | O 3.0 x 10°

2 Fuel 1 without rod 1 1.268 | 0.007181 0.004609 1 3.0 x 107
2 0.1902 | 0.07047 0.08675 0.02767 | 0 3.0 x 10°

3 Fuel 2 with rod 1 1.259 | 0.008002 0.004663 1 3.0 x 107
2 0.2091 | 0.08344 0.1021 0.02617 | O 3.0 x 10°

4 Fuel 2 without rod 1 1.259 | 0.008002 | 0.004663 1 3.0 x 107
2 0.2091 | 0.073324 0.1021 0.02617 | O 3.0 x 10°

5 Reflector 1 1.257 | 0.0006034 | - - 3.0 x 107
2 0.1592 | 0.01911 - 0.04754 | - 3.0 x 10°

Table 8 LRA benchmark delayed neutron data.

Groupi | B; AiGs™h | Xain | Xai2

1 0.0054 00654 |1 0
2 0.001087 | 1.35 1 0

Table9 LRA benchmark scalar values.

Meaning Notation | value

Axial buckling for both energy groups Béz, 1074 (cm™?)

Mean number of neutrons per fission v 2.43

Conversion factor x 3.83 x 10711 (K - cmP)
Feedback constant v 3.034 x 1073 (K1/2)
Energy released per fission 8 3.204 x 1071 (J/ fission)
Initial and reference temperature Ty 300 (K)

Active core volume Vieore 17550 (cm?)

The transient is initiated by changing the thermal absorption cross section as the following:

1-0.0606184t, <2
Lao(t) = Zgo(t = 0) { 0.8787631, t>2 (12)

where f is time in seconds.

3.5.2 Mesh

The geometry can be meshed with regular grids. And 15¢m can be used as the maximum element size to match
all material boundaries. So we can use the Rattlesnake built-in mesh generator GeneratedBIDMesh to generate
the mesh. The mesh block in the input would be:
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[Mesh]
type = GeneratedBIDMesh
dim = 2

xmin = 0

xmax = 165

ymin = 0

ymax = 165

elem_type = QUAD4

nx = 11

ny = 11
subdomain="’2

O W W NNRE B =
OO wWwWwWwWer P, R, PP R
(&2 I I S I e e A N T
OO0 W W NN P = =N
OO W WNNEFE R B =N
OO o0 WwWw W wWww
g o o1ToOWWW W W
g0 o oo o1 oo oo on
oo o1 oo O OO O1 OO

1
1
1
1
1
1
1
3
3
5
5

5
uniform_refine
second_order = false

1

I oowweE P PP R

[y

Block 1 to 5 correspond to region 1 to 5 in Fig. 8. Block 6 is the region where control rod are ejected. We leave
uniform_refine and second_order for performing convergence study when desired.

3.5.3 Transport System

We are solving the two-group diffusion problem throughout the geometry. The input block can be

[TransportSystems]
particle = neutron
equation_type = transient

G =2

DirichletBoundary = ’top right’
ReflectingBoundary = ’bottom left’

[./diff]
scheme = CFEM-Diffusion
n_delay_groups = 2
family = LAGRANGE
order = FIRST
fission_source_as_material = true
[../]
(1

We set particle as 'neutron’ to include fission reactions. We are solving a two-group transient problem. Top and
right boundaries are homogneous Dirichlet. Bottom and left boundaries are reflecting. We only have one single
diffusion system. The number of delayed neutron precursor groups is two. We want to use the classic linear
Lagrange shape functions. We treat fission source as material to have faster residual evaluations.
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3.5.4 Materials

Now we need to specify materials for the diffusion equation. We developed two neutronics materials for this
benchmark: BuckledConstantNeutronicsMaterial and BuckledFunctionTemperatureMaterial. Although they are of-
ficially in Rattlesnake, we did not list them in Neutronics Materials because they are too specific. These two
materials can be used only for diffusion calculations. BuckledConstantNeutronicsMaterial is derived from Con-
stantNeutronicsMaterial. It has one extra parameter ‘bz_sqrd” with default value 0 for the axial buckling. The
material property of the removal cross section is added by B;Dg (7,t) at every quadrature point at any time.
BuckledFunctionTemperatureMaterial is derived from FunctionNeutronicsMaterial. It also has one extra parame-
ter 'bz_sqrd” with default value 0 for the axial buckling. It accepts three more parameters ‘gamma’, ‘tempera-
ture, ‘temp0’, which are the Doppler feedback coefficient, temperature variable and the reference temperature.
It is more complicated than BuckledConstantNeutronicsMaterial because the Doppler feedback has to be applied
on the absorption cross section. So this material will first evaluate the absorption cross section at every time
step and at every spatial quadrature point. It then applies the Dopper feedback with the updated temperature
variable and the axial buckling. Finally it will add back all the out-group scatterings to retrieve the removal
cross section.

The material input block looks like

[Materials]
[./fuell_blade_in]
type = BuckledFunctionTemperatureMaterial
block =1

diffusion_coef = ’1.255 0.211°

sigma_s = ’0.232022 0.0
0.02533 1.479479°
fissile = true
nu_sigma_f = 20.004602 0.1091°
kappa_sigma_f = ’6.06782222e-14 1.438503704e-12’
chi =1.0 0.0’
sigma_r = ’0.033582 0.1003°
bz_sqrd = 0.0001
neutron_speed = ’3.e7 3.eb’

delay_fraction ’0.0054 0.001087°
decay_constant = ’0.0654 1.35’
delay_spectrum = ’1.0 0.0

1.0 0.0’
gamma = ’3.034e-3 0.0’
temperature =T
tempO = 300
plus = true
[../]
[./fuell_blade_out]
type = BuckledFunctionTemperatureMaterial
block =2

diffusion_coef = ’1.268 0.1902°

sigma_s = ’0.22803 0.0

0.02767 1.682071°
fissile = true
nu_sigma_f = ’0.004609 0.08675’
kappa_sigma_f = ’6.07705185e-14 1.14381481e-12’
chi =’1.0 0.0’
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[

—/

sigma_r =
bz_sqrd =

neutron_speed
delay_fraction
decay_constant =
delay_spectrum

gamma =
temperature =
tempO =

plus =

../

./fuell_blade_out]

type =
block =

diffusion_coef =
sigma_s =

fissile =
nu_sigma_f
kappa_sigma_f =
chi =
sigma_r =

bz_sqrd =

neutron_speed
delay_fraction
decay_constant
delay_spectrum =

gamma =
temperature =
tempO =

plus =

. /1]

./fuel2_blade_in]

type =
block =

diffusion_coef =
sigma_s =

fissile =
nu_sigma_f =
kappa_sigma_f =
chi =
sigma_r =

bz_sqrd =

neutron_speed =

’0.034851 0.07047°

0.0001

= ’3.e7 3.e5’

’0.0054 0.001087°
’0.0654 1.35°
’1.0 0.0

1.0 0.0’

.034e-3 0.0’

BuckledFunctionTemperatureMaterial

2

’1.268 0.1902’
’0.22803 0.0
0.02767 1.682071°
true

= 20.004609 0.08675’

’6.07705185e-14 1.14381481e-12’
’1.0 0.0’
’0.034851 0.07047°

0.0001

’3.e7 3.eb5’
’0.0054 0.001087°
’0.0654 1.35°
’1.0 0.0

1.0 0.0’

.034e-3 0.0’

BuckledFunctionTemperatureMaterial

3

’1.259 0.2091°

’0.2305884 0.0

0.02617 1.5106936°

true

’0.004663 0.1021°
’6.14825185e-14 1.346207407e-12’
’1.0 0.0’

’0.034172 0.08344°

0.0001

’3.e7 3.e5’
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—

—

—

delay_fraction
decay_constant
delay_spectrum

gamma
temperature
tempO

plus

. /1]

type
block

diffusion_coef
sigma_s

fissile
nu_sigma_f
kappa_sigma_f
chi

sigma_r

bz_sqrd

neutron_speed

delay_fraction
decay_constant
delay_spectrum

gamma
temperature
tempO

plus

.. /1]

./reflector]

type
block

diffusion_coef
sigma_s

fissile
sigma_r

bz_sqrd

neutron_speed

.. /1]

type
block

diffusion_coef
sigma_s

./fuel2_blade_out]

’0.0054 0.001087°
’0.0654 1.35°
’1.0 0.0

1.0 0.0°

’3.034e-3 0.0’
T
300

true

BuckledFunctionTemperatureMaterial
4

’1.259 0.2091°

’0.2305884 0.0

0.02617 1.5208106°

true

’0.004663 0.1021°
’6.14825185e-14 1.346207407e-12’
’1.0 0.0’

’0.034172 0.073324°

0.0001

’3.e7 3.eb’
’0.0054 0.001087°
’0.0654 1.35°
’1.0 0.0

1.0 0.0’

’3.034e-3 0.0’

BuckledConstantNeutronicsMaterial
5

’1.257 0.1592°
’0.2171793 0.0
0.04754 2.074692°
false

’0.0481434 0.01911°

0.0001

’3.e7 3.e5’

./fuel2_blade_in_r]

BuckledFunctionTemperatureMaterial
6

’1.259 0.2091°
’0.2305884 0.0
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0.02617 1.5106936’

fissile = true

nu_sigma_f = 20.004663 0.1021°

kappa_sigma_f = ’6.14825185e-14 1.346207407e-12’
chi =1.0 0.0’

sigma_r = ’0.034172 move_blade’

bz_sqrd = 0.0001

neutron_speed ’3.e7 3.eb’
delay_fraction = ’0.0054 0.001087°
decay_constant = ’0.0654 1.35’

delay_spectrum = ’1.0 0.0

1.0 0.0’
gamma = ’3.034e-3 0.0’
temperature =T
tempO = 300
plus = true

[../]
[

Materials, fuell_blade_in, fuell_blade_out, fuel2_blade_in, fuel2_blade_out, reflector, fuel2_blade_in_r are for the
blocks 1, 2, 3, 4, 5, and 6 respectively as in the subdomain_id of the mesh input block. Parameters type, block,
diffusion_coef,, sigma_s, fissile, nu_sigma_f, chi, kappa_sigma_f, sigma_r, neutron_speed, decay_constant, delay_fraction,
delay_spectrum, and plus of BuckledFunctionTemperatureMaterial can be found in FunctionNeutronicsMaterial. We
turned plus to true because we want to use kappa fission cross section later for evaluating the power density.
Same parameters of BuckledConstantNeutronicsMaterial can be found in ConstantNeutronicsMaterial. It is noted
that the in-group scattering cross section is not needed for diffusion calculations. They are there for consistency.
The benchmark specification does not give their values. They are evaluated with 1/3/Dg — %, ¢, where %, ¢ is
the removal cross section.

'‘bz_sqrd’ is constant 0.0001 for all materials. The temperature variable is T, which will be discussed later, is
set for all BuckledFunctionTemperatureMaterial materials. The same "temp0’ and ‘gamma’ are also set for all
BuckledFunctionTemperatureMaterial materials. It is noted that the thermal gamma is set to zero, which means
there is no Doppler feedback for thermal absorption.

The only function in the BuckledFunctionTemperatureMaterial materials is move_blade in material fuel2_blade_in_r.
So it is convenient to give the function in the input here:

[Functions]
[./move_bladel
type = SlopeFunction

timep = 0.0 2.0 3.0’
value = ’0.08344 0.073323993064 0.073323993064’
[../]

1

Parameters for SlopeFunction can be found in SlopeFunction.

We notice that there are lots of duplicated parameters in those materials. Rattlesnake provides a way to simplify
the input. Users can add an input block GlobalParams in their input. It contains parameters, that can be substi-
tuted into any input blocks or sub input blocks in the rest of the input file when the blocks have them as the
valid parameters and do not provide them. In this case, we can extract several parameters into GlobalParams,
which are used by all materials:
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[GlobalParams]

bz_sqrd = 0.0001
gamma = ’3.034e-3 0.0’
temperature =T
tempO = 300
plus = true
neutron_speed = ’3.e7 3.eb’
1
[Materials]
[./fuell_blade_in]
type = BuckledFunctionTemperatureMaterial
block =1
diffusion_coef = ’1.255 0.211°
sigma_s = ’0.232022 0.0
0.02533 1.479479°
fissile = true
nu_sigma_£f = 20.004602 0.1091°
kappa_sigma_f = ’6.06782222e-14 1.438503704e-12’
chi =1.0 0.0’
sigma_r = ’0.033582 0.1003°
delay_fraction = ’0.0054 0.001087’
decay_constant = ’0.0654 1.35’
delay_spectrum = ’1.0 0.0
1.0 0.0’
[../]
[./fuell_blade_out]
type = BuckledFunctionTemperatureMaterial
block =2
diffusion_coef = ’1.268 0.1902’°
sigma_s = ’0.22803 0.0
0.02767 1.682071°
fissile = true
nu_sigma_f = 20.004609 0.08675’
kappa_sigma_f = ’6.07705185e-14 1.14381481e-12’
chi =1.0 0.0’
sigma_r = 70.034851 0.07047’
delay_fraction = ’0.0054 0.001087°
decay_constant = ’0.0654 1.35°
delay_spectrum = 1.0 0.0
1.0 0.0
[../]
[./fuel2_blade_in]
type = BuckledFunctionTemperatureMaterial
block =3

diffusion_coef = ’1.259 0.2091°

sigma_s = ’0.2305884 0.0
0.02617 1.5106936’
fissile = true
nu_sigma_£f = 20.004663 0.1021°
kappa_sigma_f = ’6.14825185e-14 1.346207407e-12’
chi =1.0 0.0’
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sigma_r = ’0.034172 0.08344°

delay_fraction = ’0.0054 0.001087°

decay_constant = ’0.0654 1.35’
delay_spectrum = ’1.0 0.0
1.0 0.0
[../]
[./fuel2_blade_out]
type = BuckledFunctionTemperatureMaterial
block =4

diffusion_coef = ’1.259 0.2091°

sigma_s = 70.2305884 0.0
0.02617  1.5208106’°
fissile = true
nu_sigma_f = 70.004663 0.1021°
kappa_sigma_f = ’6.14825185e-14 1.346207407e-12’
chi =1.0 0.0’
sigma_r = ’0.034172 0.073324°

delay_fraction = ’0.0054 0.001087°
decay_constant = ’0.0654 1.35’
delay_spectrum = ’1.0 0.0

1.0 0.0’
[../]
[./reflector]
type = BuckledConstantNeutronicsMaterial
block =5

diffusion_coef = ’1.257 0.1592’

sigma_s = ’0.2171793 0.0
0.04754  2.074692°
fissile = false
sigma_r = 20.0481434 0.01911°
[../]
[./fuel2_blade_in_r]
type = BuckledFunctionTemperatureMaterial
block =6

diffusion_coef = ’1.259 0.2091°

sigma_s = ’0.2305884 0.0
0.02617 1.5106936’°
fissile = true
nu_sigma_£f = 20.004663 0.1021°
kappa_sigma_f = ’6.14825185e-14 1.346207407e-12’
chi =’1.0 0.0’
sigma_r = 70.034172 move_blade’

delay_fraction = ’0.0054 0.001087°
decay_constant = ’0.0654 1.35°
delay_spectrum = ’1.0 0.0
1.0 0.0’
[../]
(]

We do not put delayed neutron data into GlobalParams because the non-fissile material ‘'reflector’ does not have
them but will try to use them if they are in GlobalParams, which will result into a syntax error.
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3.5.5 Initial conditions on scalar fluxes

We now need to provide the initial condition for the scalar fluxes. Because fission source and delayed neutron
precursor concentrations are treated as material properties. Their values are evaluated on the fly based on the
scalar flux, so their initial condition is automatically taken care of. To set the initial condition for the scalar
fluxes, we use the same method, i.e. MultiApp and Transfer, like the one in 16A1 benchmark. Basically, we will
need to use the same mesh and the same materials to set up an input for solving the initial eigenvalue problem.
We let the problem run on initial and then transfer the scalar fluxes over to the transient problem. The input for
adding the initial eigenvalue problem and transfer are as the following:

[MultiApps]

[./initial_solvel
type = FullSolveMultiApp
execute_on = initial
input_files = lra_trans_initial.i

[../]
1
[Transfers]

[./copy_solution]
type = MultiAppSystemCopyTransfer
direction = from_multiapp
multi_app = initial_solve
execute_on = initial
[../]
[

The input for the initial eigenvalue problem is ‘Ira_trans_initial.i’. Because the nonlinear system and the auxil-
iary system of the initial eigenvalue problem and the transient problem contain the exactly same variables, we
can simply use MultiAppSystemCopyTransfer to transfer all solutions. This transfer will also transfer k-effective
if there is one on the transport system. Because the Mesh, Materials and the AuxVariables of the initial eigenvalue
problem will be exactly the same as those in the transient problem, we will give the rest part of the input here:

[TransportSystems]
particle = neutron
equation_type = eigenvalue

# number of energy groups
G =2

# BC and external sources
DirichletBoundary = ’top right’
ReflectingBoundary = ’bottom left’

[./diff]
scheme = CFEM-Diffusion
n_delay_groups = 2
family = LAGRANGE
order = FIRST
fission_source_as_material = true
[../]
(1

[AuxKernels]
[./power]
type = FissionSource
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variable = power
scalar_flux = ’sflux_g0 sflux_gl’
nusigf = kappa_sigma_fission
block =’1 2 3 4 6’
execute_on = timestep_end
[../]
d

[Executioner]
type = NonlinearEigen

#Preconditioned JFNK (default)

solve_type = ’PJFNK’

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

free_power_iterations = 5
source_abs_tol = 1le-10

# we do not normalize to power due to numerical issues
# le-6 * volume

# power = 0.01755

0

The only difference in the TransportSystems is now the ‘equation_type’ is eigenvalue. We do not need the tem-
perature auxiliary kernel because it does not change initially. We also do not need to evaluate power on linear
so we make it executed on "timestep_end’ to same a little computing time. NonlinearEigen is chosen for solving
the problem. Their parameters can be found in Sec. 9.5. By default, NonlinearEigen normalizes the solution
so that the total fission source is equal to k-effective. We do not normalize to power, 10~%V,oye, as specified
in the benchmark, due to numerical issues. The solution changes several magnitude which makes Jacobian-
free approach not numerically stable at the late of the transient if the initial solution is high. We note that the
normalization does not change the transient solution if we scale the power properly. Scalar fluxes need to be
interpreted properly with this different normalization though. We choose to disable the input for the initial
problem because their solution is stored by the transient problem. It is also acknowledged that creating the
extra input for the initial eigenvalue problem could be cumbersome for users. But it gives users the ultimate
flexibilities on controlling how the initial problem to be solved. We are considering to automate the creation of
the input of the initial eigenvalue problem.

3.5.6 Temperature equation

The adiabatic temperature simply says that the temperature linearly depends on the total energy deposited
locally. So we can use the auxiliary kernel for the time integration of power density to get the temperature. The
scalar fluxes have been added by the transport system and material property for the kappa fission cross section
is added by neutronics materials. We can evaluate their product to get the power density with an another
auxiliary kernel. It is noted that the power density and temperature could be discontinuous in space. So we can
not use LAGRANGE shape function as the one used by scalar fluxes. Instead, we want to use the discontinuous
version of the LAGRANGE shape function, L2 LAGRANGE for these two variables. We also want to keep the
order or these two variables the same as those for the scalar fluxes, so that no accuracy will be lose. The input
blocks for setting up these two variables are in the following;:

[AuxVariables]
[./T]
order = FIRST
family = L2_LAGRANGE
initial_condition = 300
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[../]
[./power]
order = FIRST
family = L2_LAGRANGE
[..7]
0]

[AuxKernels]
[./temperature]
type = VariableTimeIntegrationAux
variable = T
variable_to_integrate = power
# originally should be alpha/kappa = 1.1953808
# due to the normalization, we need to have the coefficient vol*nu/kappa = 1.331039e9
# so the final coefficient is alpha*vol*nu/kappa/kappa
#coefficient = 1.591098860816678e+009
coefficient = 3.182197721633356e+009
block = ’1 2 3 4 6’
execute_on = linear
[../]
. /power]
type = FissionSource
variable = power
scalar_flux = ’sflux_g0 sflux_gl’
nusigf = kappa_sigma_fission
block =’1 2 3 4 6’
execute_on = linear
[../]
1

[}

We have put the initial condition for the temperature in its declaration block because the condition is constant
with 300K. We also make the two auxiliary kernels executed on linear in order to make them participate the
residual evaluation. This make us performing fully-coupled multiphysics calculations. If however, we set the

‘execute_on’ to timestep_end, we will basically performing operator splitting calculations. It is also noted that the

-6
coefficient applied in temperature auxiliary kernel is *Yeere10 2 instead of a/« due to the initial normalization.

The name of the scalar fluxes and kappa fission cross section can be found in Sec. 4.10 and Sec. 8.2.2. Details
about two auxiliary kernels VariableTimelntegrationAux and FissionSource can be found in Sec. 13.

3.5.7 Postprocessors and core map

The benchmark asks for 10 items of the expected primary results. The most important two are item 4 and 6.

It is noted that due to our choice of the initial normalization, we need to apply a scaling factor wa% ~

1.331 x 10 on the power. We accomplished this with three postprocessors: ‘avg_temp’ for the core averaged
temperature, ‘avg_power’ for the unscaled power and ‘power’ for the properly scaled power.

[Postprocessors]
[./avg_temp]
type = ElementAverageValue
execute_on = ’initial timestep_end’
variable = T
block = ’1 2 3 4 6’
[../]
./avg_power]
type = ElementAverageValue
execute_on = ’initial timestep_end’
variable = power

[}
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block = ’1 2 3 4 6’
outputs = none

[../]

[./power]
type = ScalePostprocessor
execute_on = ’initial timestep_end’

value = avg_power
scaling_factor = 1.331039325843e9
[../]
(]

We set ‘outputs’ for ‘avg_power’ to none to prevent it from being outputted by Rattlesnake. We do want the
initial value of them, so the “execute_on’ parameter also contains initial.

Power and flux maps can be generated with the core map user objects:

[UserObjects]
[./flux_map]
type = FluxCartesianCoreMap
transport_system = diff
output_in = flux
regular_grid = true
grid_coord_x ’0 15 30 45 60 75 90 105 120 135’
grid_coord_y = ’0 15 30 45 60 75 90 105 120 135’
execute_on = ’initial timestep_end’
[../]
[./temp_map]
type = VariableCartesianCoreMap
variables = T
output_in = temp
regular_grid = true
grid_coord_x = ’0 15 30 45 60 75 90 105 120 135’
grid_coord_y = ’0 15 30 45 60 75 90 105 120 135’
execute_on = ’initial timestep_end’
[../]
0

We can use the regular grids for generating the core maps for this benchmark. The maps are created into two
files, flux and temp, for power and temperature respectively.

3.5.8 Executioner

We will use Transient executioner for solving this problem. Lots of control parameters can be seen in Sec. 9.3.
We will not try all of them, but just use the constant time stepper and the backward-Euler scheme for this
problem. The input block is:

[Executioner]
type = Transient

start_time = 0
end_time = 3

dt = 1.e-3

1_tol = le-2
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200
le-6
le-8

nl_max_its
nl_rel_tol
nl_abs_tol

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart’
petsc_options_value = ’hypre boomeramg 100’

timestep_tolerance = le-12

1

The tolerance on PJENK are set to the values so that further reducing them will not affect the time convergence
significantly. We use BoomerAMG for this diffusion solve because of its good parallel performance. We do not
have a good time stepper for this benchmark currently, so we used the default time stepper with constant time
steps specified by dt.

3.5.9 Preconditioning

Although preconditioning is not necessary for this small benchmark, we want to demonstrate how optional
preconditioning can be performed.

We choose to use the full single matrix as the preconditioning matrix:

[Preconditioning]

[./SMP_jfnk]
type = SMP
full = true
[../]

1

To make this single matrix effective, we will need to assemble Jacobian for more kernels, which is controlled by
three additional parameters in the diffusion system:

[TransportSystems]

k./diff]

assemble_fission_jacobian = true
assemble_scattering_jacobian = true
assemble_delay_jacobian = true

1

3.5.10 Outputs

Outputs are simple: we just need to indicate Rattlesnake that we want the Exodus and CSV output.

99



[Outputs]
exodus = true
csv = true

[

3.5.11 Primary results

We first run the problem with four level of uniform refinements, quadratic shape functions and 7.8125 x 10~°s
time step with Crank-Nicolson time integration scheme. The results are gathered in Table 10. The eigenvalue
with the control rod completely out can be simply obtained by running the input file for the initial eigenvalue
problem with “Executioner/time=3" on the command line. The peak powers and their occurrence are obtained
through quadratic interpolation of the three adjacent time steps whose powers show a turn-around. These
results agree well with the results of SPANDEX presented in [9].

Table 10 LRA benchmark reference results.

Initial k-effective 0.996368
k-effective with the control rod completely out | 1.015445

The first averaged peak power (W /cm?) 5455.46

The occurrence of the first peak (s) 1.44112

The second normalized peak power (W/cm3) | 795.498

The occurrence of the second peak (s) 2.00164
Averaged power density at 0.4s (W /cm?) 1.38437 x 10~°
Averaged power density at 0.8s (W /cm?®) 3.07545 x 10~°
Averaged power density at 1.2s (W /cm?) 6.67668 x 10~°
Averaged power density at 1.4s (W /cm?) 432.518
Averaged power density at 2.0s (W / cm’) 795.126
Averaged power density at 3.0s (W /cm?) 98.4276
Averaged fuel temperature at 3.0s (K) 1094.15

The averaged power density and averaged temperature versus time are plotted in Fig. 9. Normalized power
densities and temperature at t = 0.4s, 0.8s, 1.2s, 1.4s, 2.0s and 3.0s for 78 assemblies are given in Table 11
and Table 12.
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Table 11 Power map at different times.

0.8470
0.7370
0.5987
0.5415
0.4656
0.5067

0.8030
0.7116
0.5957
0.5464
0.4756
0.5102

0.7827
0.7198
0.6378
0.6002
0.5341
0.5580

0.8321
0.8024
0.7598
0.7354
0.6717
0.6823

0.9378
0.9454
0.9476
0.9391
0.8818
0.8765

1.0034
1.0485
1.0978
1.1086
1.0752
1.0541

0.8965
0.9668
1.0501
1.0781
1.0924
1.0621

t=04
t=0.8
t=12
t=14
t=20
t=3.0

1.3560
1.1779
0.9549
0.8634
0.7384
0.8039

1.1851
1.0485
0.8761
0.8037
0.6957
0.7464

1.1105
1.0217
0.9068
0.8549
0.7576
0.7903

1.1943
1.1561
1.1014
1.0699
0.9747
0.9868

1.4369
1.4587
1.4765
1.4708
1.3808
1.3661

1.7475
1.8444
1.9558
1.9879
1.9374
1.8896

1.7397
1.9077
2.1147
2.1950
2.2628
2.1880

1.4801
1.6955
1.9721
2.0946
2.3328
2.2461

1.5188
1.3168
1.0641
0.9608
0.8225
0.8973

1.0632
0.9384
0.7816
0.7166
0.6199
0.6664

0.9158
0.8432
0.7500
0.7086
0.6287
0.6556

1.0032
0.9759
0.9369
0.9144
0.8363
0.8441

1.3626
1.3955
1.4290
1.4321
1.3547
1.3348

2.1496
2.2897
2.4552
2.5090
2.4746
2.4059

2.3475
2.6122
2.9456
3.0851
3.2563
3.1399

1.8878
2.2674
2.7762
3.0300
3.6249
3.4795

1.0247
1.2829
1.6392
1.8257
2.3476
2.2532

1.2662
1.0970
0.8859
0.8002
0.6888
0.7532

0.8678
0.7653
0.6371
0.5845
0.5087
0.5482

0.7414
0.6827
0.6079
0.5753
0.5140
0.5369

0.8282
0.8066
0.7764
0.7594
0.6998
0.7070

1.1731
1.2029
1.2346
1.2398
1.1813
1.1646

1.9417
2.0691
2.2214
2.2737
2.2561
2.1949

2.2272
24771
2.7942
2.9301
3.1068
2.9978

1.9472
2.3281
2.8399
3.0978
3.6995
3.5541

1.1598
1.4317
1.8061
2.0023
2.5363
2.4370

0.7227
0.6266
0.5073
0.4597
0.3998
0.4384

0.6193
0.5466
0.4562
0.4196
0.3697
0.3995

0.5846
0.5369
0.4767
0.4510
0.4069
0.4272

0.6625
0.6402
0.6102
0.5951
0.5515
0.5611

0.8716
0.8820
0.8918
0.8911
0.8493
0.8438

1.1940
1.2534
1.3246
1.3492
1.3307
1.3027

1.4254
1.5475
1.7020
1.7671
1.8312
1.7774

1.5513
1.7360
1.9769
2.0888
2.2905
2.2155

1.0311
1.1723
1.3590
1.4486
1.6505
1.5970

0.4678
0.4051
0.3278
0.2976
0.2635
0.2911

0.4525
0.3985
0.3317
0.3052
0.2731
0.2973

0.4630
0.4218
0.3701
0.3486
0.3173
0.3366

0.5332
0.5060
0.4708
0.4548
0.4218
0.4352

0.6707
0.6601
0.6447
0.6356
0.6014
0.6070

0.8509
0.8616
0.8728
0.8743
0.8470
0.8425

1.0482
1.0850
1.1297
1.1463
1.1435
1.1277

1.2652
1.3281
1.4066
1.4386
1.4760
1.4508

0.8886
0.9395
1.0036
1.0305
1.0816
1.0632

0.3762
0.3236
0.2593
0.2347
0.2120
0.2371

0.3735
0.3262
0.2681
0.2455
0.2228
0.2456

0.3956
0.3552
0.3050
0.2847
0.2604
0.2804

0.4676
0.4329
0.3889
0.3700
0.3412
0.3586

0.5966
0.5660
0.5262
0.5079
0.4724
0.4873

0.7642
0.7379
0.7027
0.6852
0.6443
0.6565

0.9525
0.9322
0.9039
0.8885
0.8478
0.8568

1.1624
1.1476
1.1253
1.1115
1.0774
1.0848

0.8222
0.8158
0.8047
0.7966
0.7839
0.7887

0.3988
0.3397
0.2677
0.2405
0.2206
0.2502

0.3645
0.3147
0.2538
0.2304
0.2111
0.2362

0.3761
0.3327
0.2789
0.2575
0.2356
0.2575

0.4599
0.4167
0.3621
0.3392
0.3097
0.3310

0.6348
0.5843
0.5193
0.4906
0.4469
0.4703

0.8949
0.8310
0.7476
0.7094
0.6459
0.6737

1.1012
1.0306
0.9375
0.8938
0.8177
0.8474

1.2314
1.1609
1.0669
1.0217
0.9445
0.9744

0.8360
0.7918
0.7319
0.7024
0.6573
0.6771

0.5524
0.4676
0.3642
0.3252
0.3008
0.3439

0.4000
0.3426
0.2725
0.2459
0.2263
0.2555

0.3801
0.3332
0.2752
0.2523
0.2307
0.2543

0.4770
0.4274
0.3648
0.3388
0.3071
0.3311

0.7422
0.6739
0.5860
0.5474
0.4024
0.5233

1.3056
1.1927
1.0453
0.9781
0.8773
0.9256

1.5701
1.4414
1.2722
1.1937
1.0712
1.1244

1.4046
1.2961
1.1528
1.0858
0.9790
1.0238

0.8785
0.8136
0.7272
0.6863
0.6250
0.6529




Table 12 Temperature map at different times.

300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 t=04
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 t=0.8
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 t=12
303.14 | 303.17 | 303.48 | 304.26 | 305.44 | 306.41 | 306.23 t=14
594.73 | 595.99 | 62238 | 691.82 | 798.76 | 89095 | 881.84 t=20
71591 | 718.78 | 758.31 | 860.20 | 1017.29 | 1155.48 | 1149.45 t=3.0
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00

300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00

300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00

305.01 | 304.67 | 304.96 | 306.20 | 308.51 | 311.50 | 312.68 | 312.08

768.68 | 734.02 | 757.45 | 867.58 | 1077.84 | 1357.01 | 1486.38 | 1465.07

960.89 | 913.66 | 950.09 | 1111.48 | 1419.17 | 1832.37 | 2039.09 | 2033.68

300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
305.58 | 304.16 | 304.11 | 305.30 | 308.29 | 314.51 | 317.81 | 317.46 | 310.50
822.45 | 687.07 | 678.81 | 784.39 | 1057.06 | 1637.49 | 1979.04 | 2026.38 | 1372.59
1036.79 | 847.30 | 838.64 | 993.31 | 1391.20 | 2243.66 | 2773.28 | 2908.44 | 1943.86
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
304.65 | 303.39 | 303.34 | 304.40 | 307.17 | 313.14 | 316.92 | 317.85 | 311.52
736.39 | 616.67 | 608.41 | 703.42 | 957.26 | 1515.16 | 1897.98 | 2064.37 | 1469.42
916.11 | 748.32 | 739.18 | 878.32 | 1248.71 | 2067.97 | 2655.99 | 2964.93 | 2086.90
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
302.67 | 302.44 | 302.61 | 303.45 | 305.16 | 307.80 | 310.21 | 312.05 | 308.35
551.58 | 528.51 | 543.25 | 618.06 | 774.60 | 1021.73 | 1258.56 | 1456.48 | 1115.40
656.01 | 624.31 | 647.04 | 756.39 | 984.98 | 1348.82 | 1706.68 | 2015.99 | 1518.67
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
301.73 | 301.77 | 302.02 | 302.63 | 303.68 | 305.06 | 306.63 | 308.31 | 305.95
464.37 | 467.72 | 489.75 | 545.18 | 640.89 | 769.23 | 919.30 | 1085.00 | 868.08
533.46 | 538.76 | 571.14 | 651.76 | 791.09 | 979.17 | 1201.47 | 1448.58 | 1134.54
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
301.36 | 301.42 | 301.65 | 302.14 | 30294 | 303.97 | 305.14 | 306.43 | 304.61
431.48 | 436.58 | 456.62 | 501.34 | 574.46 | 669.37 | 779.70 | 903.08 | 735.11
487.43 | 49493 | 52394 | 588.41 | 693.82 | 831.11 | 991.62 | 1171.89 | 930.63
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
301.40 | 301.34 | 30149 | 301.97 | 302.84 | 304.11 | 305.18 | 305.92 | 304.07
436.79 | 429.84 | 443.02 | 48593 | 566.60 | 683.87 | 782.95 | 853.20 | 682.22
495.46 | 485.57 | 504.43 | 565.70 | 680.75 | 848.09 | 990.14 | 1091.93 | 848.25
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00
301.89 | 301.43 | 301.46 | 301.96 | 303.17 | 305.67 | 306.92 | 306.30 | 303.98
486.81 | 439.67 | 440.90 | 486.29 | 59803 | 830.90 | 946.43 | 887.68 | 672.93
567.18 | 499.70 | 501.31 | 565.76 | 724.60 | 1055.36 | 1219.76 | 1136.98 | 831.99




Convergence in time with quadratic shape functions in space and three-level uniform refinement for Crank-
Nicolson and backward Euler time integration scheme are plotted in Fig. 10. It can be seen that the convergence
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Figure 10 Time convergence of the LRA benchmark.

rates for LRA benchmark agree with the expected rates of both time integration schemes. The only exception is
the convergence rate of the end power with the backward Euler scheme. Second order convergence is observed
for the the end power with the backward Euler scheme. The similar convergence rates can be observed for
linear shape functions and different level of uniform refinements and are not presented here. It is noted that
with the fixed spatial discretization, we can do extrapolation to obtain the reference solution in time. The total
CPU time taken for the case with quadratic shape functions, one-level uniform refinement, time step size being
equal to 0.001s, and 24 processors on Falcon at INL is about 418seconds.

3.6 LRA PKE

This is a PKE tutorial using the LRA benchmark. All files necessary for running this tutorials with Rattlesnake
are under 'rattlesnake/tutorials/LRA2D-PKE’ folder.

3.6.1 Dump PKE Parameters for LRA Benchmark

In order to make the constant function as a valid weighting function, we first change the benchmark a little
by switch the Dirichlet boundary condition to vacuum boundary condition. In the transient input file and the
initial eigenvalue input file, we have now

[TransportSystems]
VacuumBoundary = ’top right’

[

We are going to use backward Euler scheme in both spatial kinetics calculation and the PKE calculation in the
next section. To make the evaluation of DNP concentrations consistent with the scheme so that we can exactly
reproduce power history with PKE solve, we need to set two parameters for the discretization scheme in the
transient input file:
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[TransportSystems]

Q;;uumBoundary = ’top right’

t:)diff]
liﬁéar_fsrc_in_time = false
dnp_integration_scheme = backward-Euler

[../]
[

These two steps are necessary to make the PKE calculation with the dumped PKE parameters exactly reproduce
the power history of the spatial kinetics calculation. In reality, however, there are other sources causing much
larger errors than skipping these two steps, these two steps can be skipped.

We need to use IQS executioner in order to dump the PKE parameters especially the dynamic reactivity during
the spatial kinetics transient solve.

[Executioner]
type = IQS
do_igs_transient = false
pke_param_csv = lra_pke_params.csv

[

The 'Ira_pke_params.csv’ will be used for storing the dumped PKE parameters.

The IQS executioner adds some auxiliary variables for storing the saved-in residuals for evaluating dynamic
reactivity. This prevents us from using the simple system-copy transfer. We have to change the transfer block
to the following:

[Transfers]

[./copy_vars]
type = MultiAppVariableTransfer
execute_on = initial
direction = from_multiapp
multi_app = initial_solve

from_variables = ’sflux_gO sflux_gl power fission_source diff_dnp_i0 diff_dnp_il’
to_variables = ’sflux_g0 sflux_gl power fission_source diff_dnp_iO diff_dnp_il’
[../]
[./copy_eigenvalue]

type = EigenvalueTransfer
execute_on = initial
direction = from_multiapp
multi_app = initial_solve
[../]
(0

It is noted that along with the variables, eigenvalue needs to be transferred as well so that the transient system
can use it for modifying the fission cross section.

We want to add four new postprocessors for monitoring the change of DNP concentration during the transient.
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[Postprocessors]

1

[.

—

—

—/

[.

/avg_dnp0]

type = ElementAverageValue
execute_on = ’initial timestep_end’
variable = diff_dnp_i0

block = ’1 2 3 4 6’

outputs = none

../

./dnp0]

type = ScalePostprocessor
execute_on = ’initial timestep_end’
value = avg_dnpO

scaling_factor = 1.331039325843e9
../]

./avg_dnp1]

type = ElementAverageValue
execute_on = ’initial timestep_end’
variable = diff_dnp_il

block = ’1 2 3 4 6’

outputs = none

/1

./dnp1]

type = ScalePostprocessor
execute_on = ’initial timestep_end’
value = avg_dnpl

scaling_factor = 1.331039325843e9
/1]

Once we made all of these changes, we can run the input to generate the PKE parameters in "Ira_pke_params.csv’.
Because we are using the constant weighting function and A;, ;,i = 1,2 are constant in the fuel, we have the
same values for them in the PKE parameters. The dynamic reactivity p and the generation time A are plot-
ted in Fig. 11. Power (normalized at initial) history from the spatial kinetics calculation is plotted in Fig. 12a.
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Figure 11 PKE parameters of LRA benchmark.

Temperature history is plotted in Fig. 12b.
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Figure 12 PKE solutions of LRA benchmark.

3.6.2 Create a PKE Model for LRA Benchmark to Reproduce the Power History

The PKE input file can be

[PKE]
n_delayed_groups = 2
amplitude_variable = n
DNP_variable = precursor
DNP_fraction_aux = beta
DNP_decay_constant_aux = lambda
generation_time_aux = Lambda

reactivity_aux = rho
pke_parameter_csv = lra_pke_params.csv

1

[1Cs]
[./ic_n]
type = ScalarComponentIC
variable = n
values = 1
[../]
d

[Executioner]
type = Transient
nl_max_its = 100
timestep_tolerance = le-12
start_time = 0
end_time = 3

dt = 1.e-2
(]
[Outputs]
csv = true
[
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We have initial equilibrium DNP concentration. It is noted that the generation time changes with time. The
PKE solve actually gives A%n. The normalized power history from this PKE calculation with the dumped PKE
parameters is also plotted in Fig. 12a.

The PKE input file can be

[PKE]
n_delayed_groups = 2
amplitude_variable =
DNP_variable = precursor
DNP_fraction_aux = beta
DNP_decay_constant_aux = lambda
generation_time_aux = Lambda
reactivity_aux = rho
pke_parameter_csv = lra_pke_params.csv

1

n

[ICs]
[./ic_n]
type = ScalarComponentIC
variable = n
values = 1
[../]
(1

[Executioner]
type = Transient
nl_max_its = 100
timestep_tolerance = le-12
start_time = 0
end_time = 3

dt = 1.e-2
1
[Outputs]
csv = true
(]

We have initial equilibrium DNP concentration. It is noted that the generation time changes with time. The

PKE solve actually gives AAOn.

3.6.3 Fit Reactivity and Generation Time with Averaged Temperature and Control-Rod Fraction

The transient contains two stages: from 0 to 2 seconds with control-rod movements; from 2 to 3 seconds without
control-rod movements. We first use least square method to fit the reactivity and generation time from 2 to 3
seconds where only thermal feedback takes effect. Because the Doppler feedback is introduced with the relative
change of the square root of local fuel temperature, we would assume the temperature dependency of reactivity
and generation time is

p(2 <=t <=38) =pyoa(t =2) —ay(VT — \/To), (13)
A2 <=t <=3) =Nt =2) —ap (VT — VTp), (14)

where p,,; and A,,; are the changes due to control-rod movement and remain constant from 2 to 3 seconds.
The fitting gives a,;,, = 3.79473349 x 10~* and 3.79473349 x 1078,
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Now we can plot the change of reactivity and generation time caused by control-rod movements: p,o4(f) =

p+ (VT — Tp) and A,ps(t) = A+ ap(VT — /Tp) in Fig. 11. We can see that both p,04(t) and A4 (t)
remains about constant after 2 second as expected. The dependency on rod fraction is not linear from 0 to 2
second, also there is a little non-smoothness around the time when the first peak power happens. Because the
reactivity function after power distribution is established is more important for heat deposition, we will use the
time period from 1.5 second to 2 second to fit the following cubic function

0r0a(0 < t < 2) Zﬁpll—c (15)

Amwm3t§m=A0=0w+ZﬁMufdwﬂ (16)
i=1

where c(t) is the control-rod fraction

1-1/2, 0<t<2
c(t):{ g / S (17)

The fitted coefficients are listed in Table 13.

Table 13  Fitting coefficients.

i Bp,i Ba,i

1| 7.65201825 x 1073
1.04302712 x 102
3 | 6.18254986 x 104

N

1.32442742 x 10~
1.69547914 x 10~
—2.25423161 x 10~7

The final reactivity function would be

Zmz ) = ap (VT — /Tp), (18)
(19)

Ale, T) =A(t =0) + 2/3/\,1‘(1 —c(t)) —apa(VT — V/Ty).
iz

They are plotted in Fig. 11 with the given temperature history. It can be seen that the reactivity from 0 to 1.5
second is slightly lower than the dumped reactivity, which will possibly make the peak power happen later.

If we integrate Eq. (5) over the core, and divide by the core volume, we obtain

BT(t) (1 {1 . po o lxpo
5 ;F( )= 1/F n(t) = f(?v)n = (20)
where T is the core-averaged fission reaction rate in unit of fi lsswn and T is the core-averaged temperature Fyis
the initial core-averaged fission reaction rate in unit of flcss% The value of % is 1.19538077 x 10~° in unit of
K
?-
Now we have set up a PKE equation with the fitted reactivity and generation-time functions:
an(t) _plc,T) -
A 21
at Alc, T )+ Z <i( @D
dei(t) __ Pi ,
= t) — Aici(t),i =1,2, 22
at A(C,T)n( ) lcl( ) 1 ( )
oT (¢ Py A
W _afh o, (23)

ot  « AT)
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with
n(t=0) =1, (24)
T(t =0) =Ty, (25)

and initial equilibrium DNP concentrations.

3.6.4 Create PKE Model for LRA Benchmark with the Fitted Functions

We still have the PKE input block for the PKE equations, but now the PKE parameters will not be set up
from the dumped file. The only change from the input for reproducing the power history is to delete the
'pke_parameter_csv’ parameter.

[PKE]
n_delayed_groups = 2
amplitude_variable = n
DNP_variable = precursor
DNP_fraction_aux = beta
DNP_decay_constant_aux = lambda
generation_time_aux = Lambda
reactivity_aux = rho

1

The DNP fractions B and decay constants A can be set with the initial condition. They will remain constant
while no auxiliary kernels are added for them. Initial condition of generation time A needs to be set for the
equilibrium condition of DNPs. Its initial value can be obtained from the dumped PKE parameters. Initial
condition of reactivity is not used for calculation, but it is better to set it to zero to be consistent with the
equilibrium condition. As the results, the ICs input block is now:

[1Cs]
[./ic_n]
type = ScalarComponentIC
variable = n
values = 1
[../]
./ic_betal]
type = ScalarComponentIC
variable = beta
values = ’0.0054 0.001087’
[../]
./ic_lambda]
type = ScalarComponentIC
variable = lambda
values = ’0.0654 1.35’
[../]
./ic_Lambdal]
type = ScalarComponentIC
variable = Lambda
values = 3.64255765123e-05 # value from the dumped PKE parameters
[../]
./ic_rho]
type = ScalarComponentIC
variable = rho
values = 0
[../]
1

[}

™

—/

[}
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We will need two auxiliary scalar kernels to evaluate the reactivity and generation time.

[Functions]
[./fraction]
type = SlopeFunction
timep = ’0 2 3’
value = 0 1 1°
[../]
(1

[AuxScalarKernels]
[./rho]
type = RoddedFeedbackAux
variable = rho
control_rod_fraction = fraction
rod_fraction_monomial_coefficients = ’0 7.65201825e-3 1.04302712e-2 6.18254986e-4’
temperature = T
temperature_coefficient = -9.66804214e-4
reference_temperature = 300
[../]
./Lambdal]
type = RoddedFeedbackAux
variable = Lambda
control_rod_fraction = fraction
rod_fraction_monomial_coefficients = ’3.64255765123e-05 1.32442742e-6 1.69547914e-6 -2.25423161e-7’
temperature = T
temperature_coefficient = -3.79473349e-8
reference_temperature = 300
[../]
(1

—

A function for one minus the control-rod fraction is also added and used by these two auxiliary kernels. Rod-
dedFeedbackAux auxiliary kernel simply use Eq. (18) and Eq. (19) to evaluate the auxiliary variables. Although
RoddedFeedbackAux auxiliary kernel is included in Rattlesnake, its task is too specific to be documented in this
manual. On the other hand, its source can be used as an example to demonstrate that how Rattlesnake can be
extended easily for special needs.

To set up the temperature equation, we first add the temperature variable.

[Variables]
[./T]
family = SCALAR
order = FIRST
initial_condition = 300
[../]
(]

Its initial condition is added inline.

Then we add an auxiliary variable for the coupling coefficient from the deposited power to the temperature.

[AuxVariables]
[./power_coef]
family = SCALAR

111



order = FIRST
initial_condition = 4.35424338e-011
[../]
1

It is noted that the coefficient contains the initial generation time and remains constant throughout the transient.

We now need to have two kernels for the temperature variable:

[ScalarKernels]
[./dT]
type = ODETimeDerivative
variable = T
[../]
[./power]
type = ScalarPrecursorSource
variable = T
betas = power_coef
Lambda = Lambda
amplitude = n
[../]
(]

Scalar kernel ScalarPrecursorSource is also used by Rattlesnake for setting up PKE.

3.6.5 Results with the PKE Model with the Fitted Functions

The normalized power and core-averaged temperature are plotted in Fig. 12. The first power peak is delayed
while the final temperatures (total deposited energy) is very close with respect to the spatial kinetics results as
expected. These results demonstrated that the LRA benchmark can be simplified into a PKE without signifi-
cantly losing accuracy with strong thermal feedback.

3.7 C5G7-2D with SAAF-SN-CFEM NDA

This is a seven-group transport benchmark without homogenization. It is solved with SAAF-CFEM-SN scheme
with nonlinear diffusion acceleration (NDA). All files necessary for running this tutorials with Rattlesnake are
under 'rattlesnake/tutorials/C5G72D/saaf-nda’ folder.

3.7.1 Problem Description

Refer to Section 3.8.1.

3.7.2 Mesh Generation

Refer to Section 3.8.2.

3.7.3 Transport Materials

Refer to Section 3.8.6.
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3.7.4 Postprocessing and Outputs

We use the following inputs to generate the flux map.

[UserObjects]
[./flux_map]
type = FluxCartesianCorelMap
transport_system = saaf
print = ’assembly pin’
print_fission_absorption_ratio = false
power_map_from = kappa_sigma_f
execute_on = ’initial timestep_end’
[../]
(0

Assembly IDs and pin IDs are presented as variables in the mesh file generated by INSTANT. We will use the
fixed the transport system name ’saaf” from now on. Users are allowed to use their own preferred names.

We also cares the run-time with:

[Postprocessors]
[./runtime]
type = RunTime
time_type = alive
[../]
[

The outputs can be simply as

[Outputs]
exodus = true
print_perf_log = true
[

3.7.5 Direct Transport Solve with SAAF-SN-CFEM

To perform a calculation with NDA, we first want to create an input for direct transport solve. What we need
other than previous sections are two blocks.

One is for the transport system:

[TransportSystems]
particle = neutron
equation_type = eigenvalue

G=17

VacuumBoundary = ’vacuum’
ReflectingBoundary = ’reflecting’
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[./saaf]
scheme = SAAF-CFEM-SN
family = LAGRANGE
order = FIRST
fission_source_as_material = true
n_delay_groups = 0

AQtype = Bickley3-Optimized
NPolar = 2
NAzmthl = 8

tau = 0
[..7]
(1

"vacuum’ and 'reflecting’ are the names of the two side sets generated by INSTANT. We turn fission_source_as_material
to true because we do not need fission source to be stored as variables thus do not waste time on converting
back and forth between fission source values on quadrature points and expansion coefficients of shape func-
tions. Bickley3-Optimized angular quadrature has been proved to be the best quadrature for this problem in term
of accuracy with the least number of streaming directions. Setting tau to zero to turn off the void treatment.

Another is the executioner:

[Executioner]
type = NonlinearEigen

#Preconditioned JFNK (default)

solve_type = ’PJFNK’

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

free_power_iterations = 2
1_max_its = 600

source_abs_tol = 1e-8

0

We want to use BoomerAMG as the preconditioner because it is more parallel scalable with domain decompo-
sition.

3.7.6 Converting the Direct Transport Solve for Transport Update
We essentially need to do four things:

1. to set equation_type in TransportSystems block to steady-state;
2. to set for_transport_update in TransportSystems/saaf block to true;

3. to change the executioner to:

[Executioner]
type = AMGUpdate
amg_tol = 1le-3
debug = false

1
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We do not need to fully converge the AMG cycles for transport update. We reduce the residual norm by
a factor 1073 with amg tol.

. to change the output block to

[Outputs]
exodus = false
csv = true
print_perf_log = true

1

and remove the user object for flux map. We do not care the Exodus outputs on the transport system
because scalar fluxes will be outputted on the low order diffusion system. The flux map will also be on
the low order system. We do want to turn on CSV outputs to store our NDA convergence history.

3.7.7 The Low Order Diffusion System

Because the low order diffusion system will use the same mesh and materials as of the transport system, we
start creating its input file from the input for the direct transport solve.

We first add an application wrapper (a user object) for transport update:

[UserObjects]

[./flux_map]

type = FluxCartesianCoreMap
transport_system = saaf

print = ’assembly pin’
print_fission_absorption_ratio = false
power_map_from = kappa_sigma_f
execute_on = ’initial timestep_end’

[../]

[./saaf_transport]

type = NewSAAFWrapper
app_type = RattleSnakeApp
input_file = saaf.i

[../]

1

We then change the TransportSystems block to:

[TransportSystems]

particle = neutron
equation_type = eigenvalue

=7

VacuumBoundary = ’vacuum’
ReflectingBoundary = ’reflecting’

[./saaf]

scheme = CFEM-Diffusion

family = LAGRANGE

order = FIRST
fission_source_as_material = true

115



n_delay_groups = 0

transport_wrapper = saaf_transport
[../]
0

We basically switch the discretization scheme from SAAF-CFEM-SN to CFEM-Diffusion. And we tells the
diffusion scheme the application wrapper, that are used for providing drift vectors and vacuum boundary
coefficients on the quadrature points, with transport_wrapper.

We will then use PicardEigen for the Picard nonlinear diffusion iteration:

[Executioner]
type = PicardEigen

#Preconditioned JFNK (default)

solve_type = ’PJFNK’

petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’

free_power_iterations = 2
1_max_its = 600

output_after_power_iterations = false
source_abs_tol = 1e-50
source_rel_tol = le-4

picard_max_its = 12
wrapped_app_tol = le-6
output_on_final = false

1

Five parameters have been kept from NonlinearEigen. The eigenvalue solve does not have to be complete. In-
stead, the convergence criteria on the relatively reducing the initial residual norm is set to 10~# without adverse
impact on the convergence of the nonlinear diffusion iteration. The nonlinear diffusion iteration converges fast.
Typically 10 iterations can reduce the error on eigenvalue to less than 1pcm. To be more conservative, we set the
maximum number of iterations to 12. The application wrapper provide the maximum relative error of scalar
fluxes for checking the convergence.

Finally we want to turn both exodus and csv on in the outputs

[Outputs]
exodus = true
csv = true
print_perf_log = true

1

3.7.8 Results

Results for this tutorial can be found in Ref. [10].
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3.8 C5G7-2D using First Order NDA solver

This example covers setting up Rattlesnake inputs for solving the two-dimensional C5G7 benchmark prob-
lem using the first order NDA method and Nonlinear Diffusion Acceleration. A detailed description of the
two-dimensional C5G7 benchmark can be found in [11]. All files necessary for running this tutorials with
Rattlesnake are under ‘rattlesnake/tutorials/C5G72D/fiso-nda’ folder.

3.8.1 Problem Description

The C5G7 benchmark is a MOX fueled, pressurized water reactor (PWR) minicore configuration. The C5G7
geometry depicted in Fig. 13 comprises a 2-by-2 array of UO, and MOX assemblies surrounded by moderator.
In Fig. 13 vacuum and reflective boundary conditions are denoted by V and R, respectively. The fuel pins
are not homogenized, each pin cell is comprised of a fuel pin, fission chamber, or guide tube surrounded by
moderator as depicted in Fig. 14. The cladding and gap are homogenized into the fuel and are not explicitly
modeled. Each assembly is made up of a regular 17-by-17 grid of pin cells. Seven energy-group cross sections
for the seven material regions are given in [11]. The energy group boundaries are provided in Table 14; three of
the seven energy groups are fast, four are thermal.

V

Reflector-
Fission Chamber @6
Guide Tube
8.7% MOX
7.0% MOX
4.3% MOX-&2

uo2-

EERERSRRARREEREE
N

R

Figure 13 Geometry of the two-dimensional C5G7 benchmark problem. Boundary conditions are vacuum (V)
or reflective (R).
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1.26

Figure 14 Geometry of a C5G7 pin-cell.

Table 14 Energy group boundaries for C5G7 MOX benchmark.

Group Upper Energy

1 20 MeV
2 1 MeV
3 500 keV
4 3eV
5
6

0.625 MeV
0.1 MeV
71 0.02 MeV

3.8.2 Mesh Generation

A triangular unstructured mesh is created using the INSTANT mesh generator, [12], [13]. INSTANT reads a
(hierarchical) geometry description in XML format and calls Triangle to triangulate the geometry. INSTANT is
compiled and executed using the commands:

> Go to the Rattlesnake directory
make instant
./yak/contrib/instant/instant_mesh_generator-opt /path/to/instant_c5g7.xml

The input file instant_c5g7.xml for the INSTANT mesh generator is listed below:

<task type="generation">

<l--

Description of the mesh
-—>
<Geometry type="LWR">
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<Controls>
<MaxArea>0.064</MaxArea>
<PinMaxArea>0.256</PinMaxArea>
<AssemblyMaxArea>4.096</AssemblyMaxArea>
<MinAngle>20</MinAngle>
<DebugOutput>t</Debuglutput>
<BlockOption>0</BlockOption>
</Controls>
<Pins>
<Pin ID="1" shape="cylindrical" type="full" name="U02">
<Radius>0.54 0.63</Radius>
<MaterialID>1 7</MateriallD>
<NSides>8</NSides><Rotation>0</Rotation>
</Pin>
<Pin ID="2" shape="cylindrical" type="full" name="M0X4.3">
<Radius>0.54 0.63</Radius>
<MaterialID>2 7</MateriallD>
<NSides>8</NSides><Rotation>0</Rotation>
</Pin>
<Pin ID="3" shape="cylindrical" type="full" name="MOX7.0">
<Radius>0.54 0.63</Radius>
<MaterialID>3 7</MaterialID>
<NSides>8</NSides><Rotation>0</Rotation>
</Pin>
<Pin ID="4" shape="cylindrical" type="full" name="M0X8.7">
<Radius>0.54 0.63</Radius>
<MaterialID>4 7</MateriallD>
<NSides>8</NSides><Rotation>0</Rotation>
</Pin>
<Pin ID="5" shape="cylindrical" type="full" name="Guide Tube">
<Radius>0.54 0.63</Radius>
<MaterialID>5 7</MateriallD>
<NSides>8</NSides><Rotation>0</Rotation>
</Pin>
<Pin ID="6" shape="cylindrical" type="full" name="Fission Chamber">
<Radius>0.54 0.63</Radius>
<MaterialID>6 7</MateriallD>
<NSides>8</NSides><Rotation>0</Rotation>
</Pin>
<Pin ID="7" shape="rectangular" name="Reflector">
<KNX>1</NX><KNY>1</NY><IX>1</IX><IY>1</IY>
<DX>1.26</DX><DY>1.26</DY>
<MaterialID>7</MaterialID>
</Pin>
</Pins>
<Assemblies>
<Assembly ID="1" name="U02">
<NXPin>17</NXPin><NYPin>17</NYPin>

<PinArrangement>
11111111111111111
11111111111111111
11111511511511111
11151111111115111
11111111111111111
1156115115115 11511
11111111111111111
11111111111111111
115611511611511511
11111111111111111
11111111111111111
115611511511511511
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11111111111111111
1115111111111565111
11111511511511111

11111111111111111
1111111111111 1111

</PinArrangement>

<XT>21.42</XT><YT>21.42</YT>

</Assembly>

<Assembly ID="2" name="MOX">

<NXPin>17</NXPin><NYPin>17</NYPin>

<PinArrangement>

22222222222222222
23333333333333332
23333533533533332
23353444444435332
23334444444443332
235445445445445232
23344444444444332
23344444444444332
235445446445445232
23344444444444332
23344444444444332
235445445445445232
23334444444443332
23353444444435332
233335335633533332
23333333333333332
22222222222222222

</PinArrangement>

<XT>21.42</XT><YT>21.42</YT>

</Assembly>
</Assembly>

<Assembly ID="3" name="Reflector">

<NXPin>17</NXPin><NYPin>17</NYPin>

<PinArrangement>

TTTTTTTTT T TTTTOT
TTTTTTTT T T TTTTTT
TTTTTTTTTTTTTTTCT
TTTTTTTTT T TTCTOT
TTTTTTTT T T TTTTTT
TTTTTTTTTTTTTTTCT
TTTTTTTT T T TTTTOT
TTTTTTTT T T TTTTTT
TTTTTTTTTT T TTTCT
TTTTTTTT T T T TTTTOT
TTTTTTTTTTTTTTTTT
TTTTTTTTTT T T TTTCT
TTTTTTTT T T TTTTTOT
TTTTTTTT T T T TTTTTT
TTTTTTTTT T TTTCT
TTTTTTTTT T TTTTO0T
TTTTTTTT T T T TTTTTT

</PinArrangement>

<XT>21.42</XT><YT>21.42</YT>

</Assembly>
</Assemblies>

<Core name="C5G7">

<BC>1 0 1 0</BC>

<NX>3</NX><NY>3</NY>

<Layout>
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213
333
</Layout>
<Homogenization>
000
000
000
</Homogenization>
</Core>
</Geometry>

<l--

1-15 for generating blocks
-=>
<option>3</option>

<output>c5g7-2d-pccm. e</output>
</task>

Three options "task/Geometry/Controls/MaxArea, task/Geometry/Controls/PinMaxArea and task/Geometry/Control-
s/AssemblyMaxArea’ are used to control how fine the mesh is. The smaller this number is the more triangles will
be generated. ’task/Geometry/Controls/MinAngle=20" makes sure that no triangle has an interior angle smaller
than 20 degrees. 'task/Geometry/Pins/Pin/NSides=8" is used to indicate that we use 8 sides to approximate the
circle of the fuel pin. "task/option=3" tells INSTANT that we want to created blocks based on the material ID and
processor ID assigned to elements. The exodus mesh file is called ¢5g7-2d-pccm.e and can be used directly in
Rattlesnake. To make the mesh embedded with the regular grid for diffusion calculation, the reflector assembly
also has 17-by-17 regular rectangular pins. More details about the input can be found in INSTANT user manual.

3.8.3 Nonlinear Diffusion Acceleration and the MultiApp System

The first order Sy NDA method is implemented using the MultiApp system with the diffusion solve being
the master app and the first order Sy solve being the sub app. The diffusion mesh and group structure can
be coarser (fewer groups and fewer mesh elements) but both have to be nested within the Sy energy group
structure and mesh, respectively. Cross sections are supplied to the sub app only, the system takes care of
transferring the appropriate cross sections to the master solve. The user has to provide two input files: one for
the Sy solve and one for the diffusion solve. Within this tutorial first the Sy input file c5g7_sub.i is discussed
and then the diffusion input files are discussed.

3.8.4 Sy Mesh Block

The Sy problems mesh block is simple because it simply loads the INSTANT created exodus mesh file.

[Mesh]
file = cbg7-2d-pccm.e
0

3.8.5 Sy Transport System Block

The TransportSystems block is listed below. Most entries do not require any explanation, but several require
specific attention as they are special for first order NDA mode. First the scheme must be DFEM-SN. Second, the
computation of cross sections (in particular the diffusion coefficient) in the diffusion system requires the linearly
anisotropic scattering rates requiring to set NA to one or larger even if the cross sections only comprise isotropic
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scattering. Further, for_transport_update must be set to true because first order NDA can only be executed using
the SweepUpdateExecutioner that requires for_transport_update=true. Finally, initialize_angular_flux must be
set to true because NDA starts with a diffusion calculation that requires properly initialized cross sections. If
all angular fluxes are set to zero, then computed cross sections will be NaN.

[TransportSystems]
particle = neutron
G=7

VacuumBoundary = ’vacuum’
ReflectingBoundary = ’reflecting’
equation_type = steady-state

[./sn]
scheme = DFEM-SN
family = MONOMIAL
order = FIRST
AQorder = 8
AQtype = Level-Symmetric
NA =1

for_transport_update = true
initialize_angular_flux = true
[../]
1

3.8.6 Transport Materials

Materials are loaded from the INSTANT-XS formatted file c5g7_materials.xml:

<Materials>
<Macros NG="7">
<material ID="1" NA="0" fissile="true">
<name>U02 fuel-clad</name>
<TotalXS>1.77949E-01 3.29805E-01 4.80388E-01 5.54367E-01 3.11801E-01 3.95168E-01 5.64406E-01</TotalXS>
<NuFissionXS>
2.0059984287E-02 2.0273029734E-03 1.5705991756E-02 4.5183010240E-02 4.3342083920E-02 2.0209009624E-01 5.2571053520E-01
</NuFissionXS>
<ChiXS>5.87910E-01 4.11760E-01 3.39060E-04 1.17610E-07 0.00000E+00 0.00000E+00 0.00000E+00</ChiXS>
<FissionXS>7.21206E-03 8.19301E-04 6.45320E-03 1.85648E-02 1.78084E-02 8.30348E-02 2.16004E-01</FissionXS>
<KappaFissionXS>7.21206E-03 8.19301E-04 6.45320E-03 1.85648E-02 1.78084E-02 8.30348E-02 2.16004E-01</KappaFissionXS>
<Profile>
11

[ I SN e
~NoowN

57
</Profile>
<ScatteringXs>
1.27537E-01
4.23780E-02 3.24456E-01
9.43740E-06 1.63140E-03 4.50940E-01
5.51630E-09 3.14270E-09 2.67920E-03 4.52565E-01 1.25250E-04
5.56640E-03 2.71401E-01 1.29680E-03
1.02550E-02 2.65802E-01 8.54580E-03
1.00210E-08 1.68090E-02 2.73080E-01
</ScatteringXS>
</material>

<material ID="2" NA="0" fissile="true">

<name>4.3 percent MOX fuel-clad</name>
<TotalXS>1.78731E-01 3.30849E-01 4.83772E-01 5.66922E-01 4.26227E-01 6.78997E-01 6.82852E-01</TotalXS>
<NuFissionXS>

2.1753004514E-02 2.5351033490E-03 1.6267991481E-02 6.5474099656E-02 3.0724087845E-02 6.6665096155E-01 7.1399043040E-01
</NuFissionXS>
<ChiXS>5.87910E-01 4.11760E-01 3.39060E-04 1.17610E-07 0.00000E+00 0.00000E+00 0.00000E+00</ChiXS>
<FissionXS>7.62704E-03 8.76898E-04 5.69835E-03 2.28872E-02 1.07635E-02 2.32757E-01 2.48968E-01</FissionXS>
<KappaFissionXS>7.62704E-03 8.76898E-04 5.69835E-03 2.28872E-02 1.07635E-02 2.32757E-01 2.48968E-01</KappaFissionXS>
<Profile>

11
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</Profile>
<ScatteringXS>
1.28876E-01
4.14130E-02 3.25452E-01
8.22900E-06 1.63950E-03 4.53188E-01
5.04050E-09 1.59820E-09 2.61420E-03 4.57173E-01 1.60460E-04
5.53940E-03 2.76814E-01 2.00510E-03
9.31270E-03 2.52962E-01 8.49480E-03
9.16560E-09 1.48500E-02 2.65007E-01
</ScatteringXs>
</material>

<material ID="3" NA="0" fissile="true">

<name>7.0 percent MOX fuel-clad</name>
<TotalXS>1.81323E-01 3.34368E-01 4.93785E-01 5.91216E-01 4.74198E-01 8.33601E-01 8.53603E-01</TotalXS>
<NuFissionXS>

2.3813952011E-02 3.8586887635E-03 2.4134001354E-02 9.4366219990E-02 4.5769876104E-02 9.2818140452E-01 1.0432001182E+00
</NuFissionXS>
<ChiXS>5.87910E-01 4.11760E-01 3.39060E-04 1.17610E-07 0.00000E+00 0.00000E+00 0.00000E+00</ChiXS>
<FissionXS>8.25446E-03 1.32565E-03 8.42156E-03 3.28730E-02 1.59636E-02 3.23794E-01 3.62803E-01</FissionXS>
<KappaFissionXS>8.25446E-03 1.32565E-03 8.42156E-03 3.28730E-02 1.59636E-02 3.23794E-01 3.62803E-01</KappaFissionXS>
<Profile>

11
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</Profile>
<ScatteringXS>
1.30457E-01
4.17920E-02 3.28428E-01
8.51050E-06 1.64360E-03 4.58371E-01
5.13290E-09 2.20170E-09 2.53310E-03 4.63709E-01 1.76190E-04
5.47660E-03 2.82313E-01 2.27600E-03
8.72890E-03 2.49751E-01 8.86450E-03
9.00160E-09 1.31140E-02 2.59529E-01
</ScatteringXs>
</material>

<material ID="4" NA="0" fissile="true">

<name>8.7 percent MOX fuel-clad</name>
<TotalXS>1.83045E-01 3.36705E-01 5.00507E-01 6.06174E-01 5.02754E-01 9.21028E-01 9.55231E-01</TotalXS>
<NuFissionXS>

2.5186004103E-02 4.7395094670E-03 2.9478053976E-02 1.1224999848E-01 5.5303012800E-02 1.0749988378E+00 1.2392983699E+00
</NuFissionXS>
<ChiXS>5.87910E-01 4.11760E-01 3.39060E-04 1.17610E-07 0.00000E+00 0.00000E+00 0.00000E+00</ChiXS>
<FissionXS>8.67209E-03 1.62426E-03 1.02716E-02 3.90447E-02 1.92576E-02 3.74888E-01 4.30599E-01</FissionXS>
<KappaFissionXS>8.67209E-03 1.62426E-03 1.02716E-02 3.90447E-02 1.92576E-02 3.74888E-01 4.30599E-01</KappaFissionXS>
<Profile>
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</Profile>
<ScatteringXS>
1.31504E-01
4.20460E-02 3.30403E-01
8.69720E-06 1.64630E-03 4.61792E-01
5.19380E-09 2.60060E-09 2.47490E-03 4.68021E-01 1.85970E-04
5.43300E-03 2.85771E-01 2.39160E-03
8.39730E-03 2.47614E-01 8.96810E-03
8.92800E-09 1.23220E-02 2.56093E-01
</ScatteringXS>
</material>

<material ID="5" NA="0" fissile="false">
<name>Guide tube</name>
<TotalXS>1.26032E-01 2.93160E-01 2.84240E-01 2.80960E-01 3.34440E-01 5.65640E-01 1.17215E+00</TotalXS>
<Profile>
11
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</Profile>

<ScatteringXS>
6.61659E-02
5.90700E-02 2.40377E-01
2.83340E-04 5.24350E-02 1.83297E-01
1.46220E-06 2.49900E-04 9.23970E-02 7.88511E-02 3.73330E-05
2.06420E-08 1.92390E-05 6.94460E-03 1.70140E-01 9.97372E-02 9.17260E-04
2.98750E-06 1.08030E-03 2.58810E-02 2.06790E-01 3.16765E-01 4.97920E-02
4.21400E-07 2.05670E-04 4.92970E-03 2.44780E-02 2.38770E-01 1.09912E+00
</ScatteringXs>
</material>

<material ID="6" NA="0" fissile="true">
<name>fission chamber</name>
<TotalXS>1.26032E-01 2.93160E-01 2.84250E-01 2.81020E-01 3.34460E-01 5.65640E-01 1.17214E+00</TotalXS>
<NuFissionXS>
1.3234010957E-08 1.4344997680E-08 1.1285993022E-06 1.2762993228E-05 3.5385018200E-07 1.7400988536E-06 5.0633018580E-06
</NuFissionXS>
<ChiXS>5.87910E-01 4.11760E-01 3.39060E-04 1.17610E-07 0.00000E+00 0.00000E+00 0.00000E+00</ChiXS>
<FissionXS>4.79002E-09 5.82564E-09 4.63719E-07 5.24406E-06 1.45390E-07 7.14972E-07 2.08041E-06</FissionXS>
<KappaFissionXS>4.79002E-09 5.82564E-09 4.63719E-07 5.24406E-06 1.45390E-07 7.14972E-07 2.08041E-06</KappaFissionXS>

<Profile>
11
12
13
15
16
27
27
</Profile>
<ScatteringXs>
6.61659E-02
5.90700E-02 2.40377E-01
2.83340E-04 5.24350E-02 1.83425E-01
1.46220E-06 2.49900E-04 9.22880E-02 7.90769E-02 3.73400E-05
2.06420E-08 1.92390E-05 6.93650E-03 1.69990E-01 9.97570E-02 9.17420E-04
2.98750E-06 1.07900E-03 2.58600E-02 2.06790E-01 3.16774E-01 4.97930E-02
4.21400E-07 2.05430E-04 4.92560E-03 2.44780E-02 2.38760E-01 1.09910E+00
</ScatteringXS>
</material>

<material ID="7" NA="O" fissile="false">
<name>Moderator</name>
<TotalXS>1.59206E-01 4.12970E-01 5.90310E-01 5.84350E-01 7.18000E-01 1.25445E+00 2.65038E+00</TotalXS>
<Profile>
11
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</Profile>
<ScatteringXS>

4.447T77E-02
.13400E-01
.23470E-04 1.29940E-01 3.45256E-01
.T4990E-06 6.23400E-04 2.24570E-01 9.10284E-02 7.14370E-05

2.82334E-01
1
6
.31840E-08 4.80020E-05 1.69990E-02 4.15510E-01 1.39138E-01 2.21570E-03
2
5
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.44860E-06 2.64430E-03 6.37320E-02 5.11820E-01 6.99913E-01 1.32440E-01
.04550E-06 5.03440E-04 1.21390E-02 6.12290E-02 5.37320E-01 2.48070E+00
</ScatteringXs>
</material>
<material ID="8" NA="O" fissile="false">
<name>control rod</name>
<TotalXS>2.16768E-01 4.80098E-01 8.86369E-01 9.70009E-01 9.10482E-01 1.13775E+00 1.84048E+00</TotalXS>
<Profile>
11
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</Profile>
<ScatteringXS>
1.7056E-01
4.4401E-02 4.7105E-01
9.8367E-05 6.8548E-04 8.0186E-01
1.2779E-07 3.9140E-10 7.2013E-04 5.7075E-01 6.5556E-05
1.4602E-03 2.0784E-01 1.0243E-03
3.8149E-03 2.0247E-01 3.5304E-03
3.6976E-09 4.7529E-03 6.5860E-01
</ScatteringXs>
</material>
</Macros>
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</Materials>

It is noted that the benchmark provides the averaged neutrons emitted per fission v and fission cross section
Yre, 8 =1,---,7. INSTANT format requires vy o, which needs more precision than 6 to keep the data con-
sistent. We also provide fake x¥f ., for making postprocessing easier. Note, INSTANT cross sections formats
can be loaded into ConstantNeutromcsMaterzal representing cross sections that do not depend on state variables
such as temperature or burnup. The block names M-< n >-TRI are assigned automatically by the INSTANT
mesh generator.

The Materials block is listed below:

[Materials]

~—

(ol

[}

—/

™

[}

./uo2]

type = ConstantNeutronicsMaterial

block =
fromFile
fileName

material_

../]
. /mox4 . 3]

id =

’M-1-TRI’

true
cbg7_materials.xml
1

type = ConstantNeutronicsMaterial

block =
fromFile
fileName

material _
../]
. /mox7.0]

id =

’M-2-TRI’

true
cbg7_materials.xml
2

type = ConstantNeutronicsMaterial

block =
fromFile
fileName

material_
. /]
./mox8.7]

id

’M-3-TRI’

true
cbg7_materials.xml
=3

type = ConstantNeutronicsMaterial

block =
fromFile
fileName

material_
. /]
./GuideTube]

id =

’M-4-TRI’

true
cbg7_materials.xml
4

type = ConstantNeutronicsMaterial

block =
fromFile
fileName

material_
. /]

./FissionChamber]

id

’M-5-TRI’

true
cbg7_materials.xml
=5

type = ConstantNeutronicsMaterial

block =
fromFile
fileName

material _
. /]

./moderator]

id

’M-6-TRI’

true
cbg7_materials.xml
=6

type = ConstantNeutronicsMaterial

block =
fromFile

’M-7-TRI’

true

125



fileName = cbg7_materials.xml
material_id =7

[../]

1

We can use GlobalParams to reduce the size of the materials block.

[GlobalParams]
fromFile = true
fileName = cb5g7_materials.xml

1
[Materials]
[./uo2]
type = ConstantNeutronicsMaterial
block = ’M-1-TRI’
material_id = 1
[../]
[./mox4.3]
type = ConstantNeutronicsMaterial
block = ’M-2-TRI’
material_id = 2
[../]
[./mox7.0]
type = ConstantNeutronicsMaterial
block = ’M-3-TRI’
material_id = 3
[../]
[./mox8.7]
type = ConstantNeutronicsMaterial
block = ’M-4-TRI’
material_id = 4
[../]
[./GuideTube]
type = ConstantNeutronicsMaterial
block = ’M-5-TRI’
material_id = 5
[../]
[./FissionChamber]
type = ConstantNeutronicsMaterial
block = ’M-6-TRI’
material_id = 6
[../]
[./moderator]
type = ConstantNeutronicsMaterial
block = ’M-7-TRI’
material_id =7
[../]
1

3.8.7 Sy Postprocessor Block

The SweepUpdate Executioner requires the user to provide a postprocessor measuring the convergence as the
norm of the difference between two iterates. In this example, we opt to use the fission source as the variable for
checking converge. The ElementL2Diff postprocessor that computes an L2 norm of the difference of successive
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iterates is used. As variable, the fission_source, that is added automatically if particle type neutron is selected,
is provided. Execution must be on linear.

[Postprocessors]
[./fsrc_diff]
type = ElementL2Diff
block = ’M-1-TRI M-2-TRI M-3-TRI M-4-TRI M-5-TRI M-6-TRI M-7-TRI’
variable = fission_source
execute_on = linear
[../]
(1

3.8.8 Sy Executioner Block

The SweepUpdate executioner must be used. For running NDA efficiently, only a single richardson iteration (
richardson_max_its = 1) should be used triggering only do a single transport update after each diffusion solve.
For forcing the execution of a single transport update, the absolute tolerance should be set to a very small value.
xdiff takes the name of a postprocessor for evaluating the progress of the iteration; in this case the postprocessor
defined in 3.8.7 is used. Note: The first order Sy multiapp setup uses the postprocessor provided in the sub
app’s executioner block for determining convergence of the NDA Picard iteration.

[Executioner]
type = SweepUpdate
richardson_max_its
richardson_abs_tol = 1.0e-16
xdiff = fsrc_diff

(]

]
-

3.8.9 Sy Outputs Block

Nothing special needs to be considered in the Outputs block. csv output is set to true to study the convergence
history.

[Outputs]
file_base = cbg7_2d_out
exodus = false
csv = true

[

3.8.10 Diffusion Mesh Block

NDA allows the diffusion mesh to be coarser than the Sy mesh as long as it is nested within it. A mesh is
nested in another mesh if each S)y mesh element is within a single diffusion mesh element. In this tutorial two
diffusion meshing options are discussed: fine mesh (fm) uses identical diffusion and Sy meshes, while coarse
mesh (cm) uses a structured quadrilaterial mesh for the diffusion calculation where each element comprises a
single pin cell (Note: for this to work the Sy mesh was prepared so no triangle crosses pin-cell boundaries).
The fine mesh input file is named c5g7_master_cm.i, and the coarse mesh input file is named c5g7_master_fm.i.

Fine mesh Mesh block:
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[Mesh]
file = cbg7-2d-pccm.e

(1
Coarse mesh Mesh block:
[Mesh]
type = GeneratedMesh
dim = 2
xmin = 0
xmax = 64.26
ymin = 0
ymax = 64.26
elem_type = QUAD4
nx = 51
ny = 51
uniform_refine = 0
(1

3.8.11 Diffusion TransportSystems Block

The keyword triggering the execution of the first order NDA solve is transport_multiapp_file that must match
the name of the sub app input file. The number of groups G should be equal to the number of groups in the
sub app solve (G=7 in this case). The number of energy groups used in the diffusion solve is determined by
the parameter group_collapsing. group_collapsing is an array of integers of length G. Using C++ indexing,
the entry at position g is the diffusion energy group index of Sy energy group g. For using the same group
structure, ‘0123 4 5 6’ is used, while for a two-group diffusion solve with the first 4 Sy groups being collapsed
into diffusion group 0 and the last 3 groups being collapsed into group 1’00001 1 1" is used. DGtype must
be set to IIP and NDA_type determines the type of NDA closure: pcmfd should usually be used. The only
difference between the fine mesh and coarse mesh case are the boundary conditions. In the fine mesh case,
the boundaries are named in the mesh generation process, while in the coarse mesh case the boundaries are
named/numbered automatically by the GeneratedMesh object.

Fine mesh TransportSystems block:

[TransportSystems]
particle = neutron
G=17

VacuumBoundary = ’vacuum’
ReflectingBoundary = ’reflecting’
equation_type = eigenvalue
[./diff_dfem]
scheme = DFEM-Diffusion
family = MONOMIAL
order = FIRST
NDA_type=pcmfd
transport_multiapp_file = ’cb5g7_sub.i’
G=17
# same group structure
group_collapsing = 0 1 2 3 4 5 6’
# diffusion system uses two groups
# group_collapsing = °0 0 0 0 1 1 1’
DGtype = IIP
[../]

128



[

Coarse mesh TransportSystems block:

[TransportSystems]
particle = neutron
VacuumBoundary = ’0 3’
ReflectingBoundary = ’1 2’
equation_type = eigenvalue
[./diff_dfem]
scheme = DFEM-Diffusion
family = MONOMIAL
order = FIRST
G=17
NDA_type=pcmfd
transport_multiapp_file = ’cbg7_sub.i’
# same group structure
group_collapsing = 0 1 2 3 4 5 6’
# diffusion system uses two groups
# group_collapsing = 0 0 0 0 1 1 1’
DGtype = IIP
[../]
1

3.8.12 Diffusion Materials Block

Do not provide a Materials block. Materials are added automatically and computed from the Sy solution.

3.8.13 Diffusion Executioner Block

The DFEMNDAEigenExecutioner is used that triggers a Picard iteration scheme for the solution of the NDA
eigenvalue equations. The parameter max_steps determines the maximum number of Picard iterations and tol
is the convergence tolerance that the iterative error given by the sub app postprocessor specified in section 3.8.7
must satisfy for convergence.

Differences exist in the fine mesh and coarse mesh executioner blocks as the convergence properties of these
two cases are very different. The preconditioner of choice is usually algebraic multigrid, i.e. hypre boomeramg
as in the coarse mesh case. However, it only works well for elliptic system, but the low order NDA system is
an advection-diffusion system because of the advection-like closure terms. In the fine mesh case, the advective
terms are too strong for AMG to work properly so the additive Schwartz method is used instead. In addition
three free power iteration are required to guarantee convergence to the fundamental mode.

For the coase mesh case AMG can be used, but with increasing the number of concurrent parallel processes,
more free power iteration and possibly more V-cycles are required to ensure appropriate convergence of the
diffusion system. For both cases an alternative set of PETSc parameters is available for serial execution using
the direct inversion of the linear system via LU decomposition.

Fine mesh TransportSystems block:

[Executioner]
type = DFEMNDAEigenExecutioner
# NDA params
max_steps = 50
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tol = 1.0e-6

# PJFNK diffusion solve
nl_max_its = 20

1_max_its = 100

1_tol = 1e-05
source_abs_tol 1.0e-9
source_rel_tol 1.0e-6
free_power_iterations = 0
extra_free_pi = 3
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -ksp_gmres_restart -sub_pc_type -pc_asm_overlap’

petsc_options_value = ’asm 50 1u 1’
# the following PETSc parameters only work in serial

# petsc_options_iname = ’-pc_type -ksp_type -ksp_gmres_restart’

# petsc_options_value = ’ lu gmres 50’

[

Coarse mesh TransportSystems block:

[Executioner]
type = DFEMNDAEigenExecutioner
# NDA params
max_steps = 50
tol = 1.0e-6
# PJFNK diffusion solve
nl_max_its = 20
1l _max_its = 100
1_tol = 1e-05
source_abs_tol = 1.0e-9
source_rel_tol 1.0e-6
free_power_iterations = 0
extra_free_pi =1
# for execution on more processor these settings might be necessary
# extra_free_pi = 3
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_type -ksp_gmres_restart’

petsc_options_value = ’ hypre boomeramg gmres 50°

# for execution on more processor these settings might be necessary

# petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_type -ksp_gmres_restart
-pc_hypre_boomeramg_max_iter -pc_hypre_boomeramg_rtol’

# petsc_options_value = ’ hypre boomeramg gmres 50
6 0.0’

# the following PETSc parameters only work in serial

# petsc_options_iname = ’-pc_type -ksp_type -ksp_gmres_restart’

# petsc_options_value = ’ lu gmres 50’

(]

3.8.14 Diffusion Outputs Block

No special NDA parameters are required for diffusion Outputs block. print_linear_residuals is set to true for
detecting problem with the linear convergence in the diffusion system. csv and exodus outputs are requested.

[Outputs]
file_base = cbg7_cm_out
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print_linear_residuals = true
exodus = true
csv = true

[

3.8.15 Executing the Input

You have to make sure that the yak library path is correctly set. Then the diffusion problem file is executed
using Rattlesnake.

export MOOSE_LIBRARY_PATH=/path/to/libyak-opt.la
./rattlesnake—opt -i cbg7_master_cm.i
./rattlesnake-opt -i cbg7_master_fm.i

3.8.16 Results

Results for this tutorial can be found in Ref. [14] and [15].

3.9 Coupled reactor calculation

3.9.1 Problem description

Geometry of this tutorial problem is illustrated in Fig. 15. Sizes of all regions are marked on the figure and are

Vacuum
N
Reflector
e S
™
o - >
L &
HG_J Thermal region >
o
© [Thermal filter
n
Fast region
o
0 56 13 24
Reflecting

Figure 15 Geometry of the coupled reactor.
in unit of centimeter. The region with the fast spectrum is surrounded by a thermal neutron filter which filters

the neutrons from the region next to it with the thermal spectrum. Thermal region is surrounded by the outer
reflector. The simple two-group cross sections for demonstrating the capability of multi-region calculations
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of these four regions are given in Table 15. All cross sections in the table are in unit of 1/cm. The group
averaged neutron velocities are constant for all four regions. The fast velocity is 4.34311E + 09cm /s and the
thermal velocity is 2.82595E + 06c¢m/s. Fission spectrum of the fast and thermal regions are the same, x1 = 1
and x» = 0. Delayed neutron data can be included in the calculation although they are not presenting in
this problem. The left and bottom boundaries are reflective and right and top boundaries have zero incoming
neutron flux. We want to calculate the coupled parameters of the fast and thermal regions.

Table 15 Cross sections of the coupled reactor.

Xtg 50,88 Ts1g/-g
Region | g Ttg ¢ =1 g =2 ¢ =1 g =2 vEfe
Fast 1| 3.79586E-01 | 3.4788E-01 0.0000E+00 | 1.0628E-01  0.0000E+00 | 7.19278E-02
2 | 6.41032E-01 | 3.8229E-09 3.1800E-01 | 0.8246E-09  1.0903E-03 | 3.89643E-01
Thermal | 1 | 5.68247E-01 | 5.1603E-01 0.0000E+00 | 3.1445E-01 0.0000E+00 | 2.50614E-03
2 | 1.88134E+00 | 5.0241E-02 1.7937E+00 | 0.9285E-02 0.7976E+00 | 1.32816E-01
Filter 1 | 3.16675E-01 | 2.4923E-01 0.0000E+00 | 3.9400E-02  0.0000E+00 -
2 | 2.90484E+01 | 2.8582E-11 2.0710E+00 | -0.7873E-12  1.9424E-02 -
Reflector | 1 | 3.77860E-01 | 3.7174E-01 0.0000E+00 | 2.8487E-02  0.0000E+00 -
2 | 490661E-01 | 6.1056E-03 4.9052E-01 | -1.4008E-03 2.5143E-02 -

3.9.2 The stand-alone input file

We first create the stand-alone input file for the eigenvalue calculation of this problem.

[Mesh]
type = CartesianMesh
dim = 2
dx = ’6 17 11°
ix =’617 11’
dy = ’6 1 7 11°
iy =617 11’

uniform_refine
subdomain_id =
1234

=1

W N
W N
> w w

4
4
4>

1

[TransportSystems]
particle = neutron
equation_type = eigenvalue

G =2

VacuumBoundary = ’right top’

ReflectingBoundary = ’left bottom’

[./diff]
scheme = SAAF-CFEM-SN
AQorder = 8
AQtype = Level-Symmetric
NA =1

family = LAGRANGE

order = FIRST
fission_source_as_material = true
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[../]
1

[Materials]
[./fast_reigon]
type = ConstantNeutronicsMaterial

block = 1

sigma_t = ’3.79586E-01 6.41032E-01’
L=1

sigma_s = ’3.4788E-01 0.0000E+00

3.8229E-09 3.1800E-01

1.0628E-01 0.0000E+00

0.8246E-09 1.0903E-03’
diffusion_coef = ’1.2196 0.5209°

fissile = true

nu_sigma_f = ’7.19278E-02 3.89643E-01’

kappa_sigma_f = ’8.50985E-13 5.00750E-12’

chi =1.0 0.0’

sigma_r = ’3.1706E-02 3.23032E-01’
[../]

~—

./thermal_neutron_filter]
type = ConstantNeutronicsMaterial
block = 2

sigma_t = ’3.16675E-01 2.90484E+01’

L=1

sigma_s = ’2.4923E-01 0.0000E+00
2.8582E-11 2.0710E+00
3.9400E-02 0.0000E+00
-0.7873E-12 1.9424E-02’

diffusion_coef = ’1.2022 0.0115°

fissile = false

sigma_r = ’6.7445E-02 2.69774E+01’

[../]

[}

./thermal_reigon]
type = ConstantNeutronicsMaterial

block = 3

sigma_t = ’5.68247E-01 1.88134E+00’

L=1

sigma_s = ’5.1603E-01 0.0000E+00
5.0241E-02 1.7937E+00
3.1445E-01 0.0000E+00
0.9285E-02 0.7976E+00’

diffusion_coef = ’1.3134 0.3076°

fissile = true

nu_sigma_f = ’2.50614E-03 1.32816E-01’

kappa_sigma_f = ’3.63645E-14 1.91727E-12’

chi =’1.0 0.0’

sigma_r = ’5.2217E-02 8.7640E-02’

[../]

—

./outer_reflector]
type = ConstantNeutronicsMaterial

block = 4

sigma_t = ’3.77860E-01 4.90661E-01"
L=1

sigma_s = ’3.7174E-01 0.0000E+00

6.1056E-03 4.9052E-01
2.8487E-02 0.0000E+00
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-1.4008E-03 2.5143E-02’
diffusion_coef = ’0.9541 0.7160°

fissile = false
sigma_r = ’6.7445E-02 2.69774E+01’
[../7]
[
[Postprocessors]

[./fluxintegrall
type = ElementIntegralVariablePostprocessor
variable = flux_moment_gO_LO_MO
execute_on = linear
[../]
[

[Executioner]
type = NonlinearEigen

free_power_iterations = 4
source_abs_tol = le-12
output_before_normalization = false
output_after_power_iterations = false

#Preconditioned JFNK (default)
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’

petsc_options_value = ’hypre boomeramg 100’
[
[Outputs]

exodus = true
1

We used the CartesianMesh mesh because the geometry of this tutorial is regular. We use Sg level symmetric
quadrature in the input. Finer angular resolution will be needed to reduce the angular discretization error.
We need to set NA to 1 to accommodate the linear anisotropic scattering cross sections. We added one post-
processor to obtain the integral of the fast flux over the entire domain for a sanction check explained later.
Diffusion coefficients and removal cross sections in the materials are not necessary. We keep them only because
it will make switching transport schemes to diffusion schemes easy. Diffusion coefficients are evaluated with

1 . . G .
m) Removal cross sections are evaluated with X ¢ — Zg,:1 0,45~ The rest input parameters are

fairly strait-forward and their meanings will not be repeated.

3.9.3 The master input file
Then we change the stand-alone input file to create the master input file for driving the multi-region calculation.
The changes are quite simple.

We will first need to add the following three parameters for all materials. Because these parameters are the
same for all materials, we use GlobalParams to add them.

[GlobalParams]
# let neutronics material accept neutron speed
forTransient = true
neutron_speed = ’4.34311e9 2.82595e6’
# let neutronics material evaluate delayed and prompt spectrum
plus = true
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[

These parameters will ensure additional material properties are declared and evaluated by neutronics materials
for the multi-region calculation.

We then change the executioner type to PicardEigen so that MultiApps for the full/partial adjoint and partial
forward calculations on timestep_begin and timestep_end will be invoked.

[Executioner]
type = PicardEigen

1

PicardEigen shares most of parameters of NonlinearEigen, except the parameters for Picard iterations. In this cal-
culation, we only need it to evaluate MultiApps on timestep_begin and timestep_end once and no Picard iterations
are needed. So default values of all those parameters can be used.

Finally we use the MultiRegion input block to add the MultiApps and tell Rattlesnake to do the multi-region
calculation.

[MultiRegion]
transport_system = diff
regions = ’1 3’
adjoint_multiapp_file = adjoint_2g.i
adjoint_partial_multiapp_files = ’aslavel_2g.i aslave2_2g.i’
forward_partial_multiapp_files = ’slavel_2g.i slave2_2g.i’
csv_file = params.csv

1

Block 1 and 3 are the two regions. csv_file makes the evaluated parameters dumped into the CSV file. It is used
for automatic testing.

3.9.4 The input file for the full adjoint calculation

We need to create the input file for the full adjoint calculation. This can be done by modifying the stand-alone
forward input file. We simply add the following two parameters in the TransportSystems block:

[TransportSystems]

for_adjoint = true
for_math_adjoint = true

We need to make sure we are indeed doing the mathematical adjoint calculation by setting for_math_adjoint to
true.
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3.9.5 The input file for the partial forward calculations

The partial forward calculations use the fission source from the master solve and evaluate the fluxes from this
source with source problem calculations. To do this, starting from the stand-alone input file, we need to tell the
transport system that

[TransportSystems]
ééﬁation_type = steady-state
t:)diff]

é#ﬁlicit_fission = true

[../]
1

We then need to use Richardson executioner instead the NonlinearEigen.

[Executioner]
type = Richardson
petsc_options_iname = ’-pc_type -pc_hypre_type -ksp_gmres_restart ’
petsc_options_value = ’hypre boomeramg 100’
nl_rel_tol = 1e-12
(0

We also need to disable the fission in the other regions for the partial calculation of one particular region. This
can be done by setting the parameter disable_fission of the materials of the other regions to true. For example,
for the partial solve of the fast region, we need to set

[Materials]
[./thermal_region]

disable_fission = true

[../]

1

3.9.6 The input file for the partial adjoint calculations

The partial adjoint calculations use the adjoint fission source from the full adjoint solve and evaluate the adjoint
fluxes from this source with source problem calculations. These files can be created easily by modifying the
existing input files for the partial forward calculations. We simply need to add

[TransportSystems]

for_adjoint = true
for_math_adjoint = true

for the corresponding partial forward input files.
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3.9.7 Results

The mesh and angular quadrature need to be much refined to get a solution without too much discretization
errors for this simple problem. However, we will just present the screen output generated with the above
settings. One simple sanction check can be done by adding all fast flux postprocessors of all partial calculations,
and checking if the result is equal to the full eigenvalue solve.

>k 3k 3k 3k 3k 5k %k >k 3k 5k 3k 3k %k %k 3k 3k 3k 3k 5k %k %k >k 3k 3k %k %k %k % > 3k k

Coupled reactor parameters
sk sk ke sk sk s ok sk sk e ksl sk ke ok sk ok ke sk sk s ke sk sk s sk ok e ok

H ok ok oK K K K oK oK K K K oK oK KK ok ok K K ok ok K K ok ok K K

rho and Lambda
Kok ok oK oK K 3 ok oK oK K ok ok ok K sk ok ok ok ok sk ok ok ok ok ok ok K K

0 0.66447997 8.40803974e-09
1 0.11528978 4.05670979e-08
0 0.54174692 4.67042342e-06
1 0.81384753 5.36178553e-06

H ok ok oK K K K oK oK K K K oK oK KK ok ok Kk K ok ok Kk Kok ok Kk

rho derived from weak form
K3k ok oK K K o ok oK oK K o ok ok K K sk ok ok ok K ok ok ok K ok ok K K

n m (0,0) (0,1) (1,0) (1,1)
0 0 0.70056919 0.68528197
0 1 0.12026290 0.10806838
1 0 0.51949850 0.54380253
11 0.81192562 0.83183280

The eigenvalues of both p matrices, 0,;,n,m = 1,2;n = 1,2 is indeed 1.000000.

3.10 A problem demonstrates YAKXS

Simple criticality search with temperature change and control rod change with the tabulated cross sections in
YAKXS format. (To be added.)

3.11 A thermal radiation benchmark

(To be added.)
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4 TransportSystems

Parameters in this block and its sub-blocks are used to describe the transport equation and the employed type
of discretization scheme. This block is the only one that does not follow the MOOSE syntax. It is meant to
automatically setup many other MOOSE syntax blocks based on the options that are used within this block and
sub-blocks.

4.1 particle

Description: Particle type of the transport system

Data type: Enumeration (/common/neutron/thermal/)
Default value: <required>

Syntax: TransportSystems/particle

Note: This parameter can only be common, neutron or thermal at this moment. We will add more particle types
here for Rattlesnake in the future. If the particle is a type other than common, additional parameters in Neu-
tron or Thermal determined by this parameter are available to append parameters specified in Discretization
Schemes. When particle type is neutron, almost all schemes can be chosen except DFEM-PN. When particle
type is thermal, only DFEM-PN, SAAF-CFEM-SN and CFEM-Diffusion schemes can be used.

4.2 equation_type

Description: Type of the transport equation
Data type: Enumeration (/steady-state/transient/eigenvalue/)
Default value: <required>

Syntax: TransportSystems/equation_type

4.3 for_adjoint

Description: Switch between (adjoint/primal) transport equation
Data type: Logical
Default value: False

Syntax: TransportSystems/for_adjoint

4.4 for-math_adjoint

Description: Switch between (mathematical / physical) adjoint.
Data type: Logical

Default value: True
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Syntax: TransportSystems/for_math_adjoint

Note: Parameter is active only if for_adjoint is true. Mathematical adjoint of schemes, including CFEM-Diffusion,
DFEM-SN and DFEM-Diffusion with DGType being equal to SIP, are the same as their physical adjoint. Math-
ematical adjoint of the rest schemes are different from the physical adjoint. This parameter can be set to true
only for CFEM-Diffusion, DFEM-SN, DFEM-Diffusion with DGType being equal to SIP, or SAAF-CFEM-SN.

45 G

Description: Number of energy groups or bands
Data type: Integer
Default value: 1

Syntax: TransportSystems/G

4.6 Boundary condition

Rattlesnake uses mesh side sets to indicate where the boundary conditions are applied. This manual makes no
differences between mesh side sets and boundaries. Users provide a list of names of side sets contained in the
mesh for a set of supported boundary condition types, which are listed in the following subsections.

4.6.1 DirichletBoundary

Description: Dirichlet boundaries

Data type: Vector of boundary names

Default value: <empty>

Syntax: TransportSystems/DirichletBoundary

Note: This boundary condition type is only supported for diffusion approximations: CFEM-Diffusion or DFEM-
Diffusion.

4.6.2 DirichletValue

Description: Constant scalar fluxes values on the Dirichlet boundaries
Data type: Vector of real

Default value: <empty>

Syntax: TransportSystems/DirichletValue

Note: This parameter depends on DirichletBoundary and G. The number of values must be equal to the number
of side sets in DirichletBoundary times G. Values are ordered by groups then by boundaries. It is noted that we
are considering to use function for setting Dirichlet values.
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4.6.3 VacuumBoundary

Description: the vacuum or surface source boundaries
Data type: Vector of boundary names
Default value: <empty>

Syntax: TransportSystems/VacuumBoundary

4.6.4 SourceDirection

Description: Angular direction index of all non-zero surface source vacuum boundaries for all groups.
Data type: Vector of integers

Default value: <empty>

Syntax: TransportSystems/SourceDirection

Note: This parameter depends on VacuumBoundary and G. The number of values must be equal to the number
of side sets in VacuumBoundary times G. Values are ordered by group then by boundaries. It is noted that only
one non-zero surface source direction is currently allowed for a group. This parameter is invalid for diffusion
approximations: CFEM-Diffusion or DFEM-Diffusion.

4.6.5 SurfaceSource

Description: Constant angular flux values on the vacuum boundaries
Data type: Vector of real

Default value: <empty>

Syntax: TransportSystems/SurfaceSource

Note: This parameter depends on VacuumBoundary, G and SourceDirection. The number of values must
be equal to the number of side sets in VacuumBoundary times G. Values are ordered by group then by the
boundaries. If SourceDirection is given, values here are treated as angular fluxes at those particular directions
specified in SourceDirection, otherwise they are the value for all incoming directions. This might change in the
future and allow functions for setting surface sources.

4.6.6 ReflectingBoundary

Description: Specular reflecting boundaries
Data type: Vector of boundary names
Default value: <empty>

Syntax: TransportSystems/ReflectingBoundary

4.6.7 WhiteBoundary

Description: White boundaries
Data type: Vector of boundary names

Default value: <empty>
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Syntax: TransportSystems/WhiteBoundary

Note: This boundary condition type is invalid for diffusion approximations: CFEM-Diffusion or DFEM-Diffusion.

4.7 Volumetric source

Rattlesnake uses mesh blocks for specifying external volumetric sources. This manual makes no differences
between mesh blocks and subdomains. Users provide a list of names of subdomains contained in the mesh and
either a vector source strength values or a transport functions on each block.

4.7.1 VolumetricSourceBlock

Description: Subdomains on which non-homogeneous volumetric sources are to be specified
Data type: Vector of subdomain names
Default value: <empty>

Syntax: TransportSystems/VolumetricSourceBlock

4.7.2 VolumetricSource

Description: Strengths of volumetric sources
Data type: Vector of real
Default value: <empty>
Syntax: TransportSystems/VolumetricSource

Note: This parameter depends on VolumetricSourceBlock and G. The number of values must be equal to the
number of blocks in VolumetricSourceBlock times G. Values are ordered by group then by the blocks. It is noted
that we are considering to use function for setting sources and LS-CFEM-PN and DFEM-PN already switched
to using VolumetricSourceFunc.

4.7.3 VolumetricSourceFunc

Description: Transport functions of volumetric sources
Data type: Vector of function names

Default value: <empty>

Syntax: TransportSystems/VolumetricSourceFunc

Note: This parameter depends on VolumetricSourceBlock. The number of values must be equal to the number
of blocks in VolumetricSourceBlock. Functions used in this parameter must be in type of TransportFunction.
Only LS-CFEM-PN is currently using this parameter.
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4.7.4 PointSourceLocation

Description: X-Y-Z coordinates of a volumetric point source
Data type: Vector of real

Default value: <empty>

Syntax: TransportSystems/PointSourceLocation

Note: The number of real numbers needs to be consistent with the dimension of the mesh. Only SAAF-CFEM-
PN is currently using this parameter.

4.7.5 PointSourceValue

Description: Strength of the volumetric point source
Data type: Vector of real

Default value: <empty>

Syntax: TransportSystems/PointSourceValue

Note: The number of values must be equal to the number of groups G. Only SAAF-CFEM-PN is currently using
this parameter.

4.8 Multiscale transport

Rattlesnake supports multiscale transport simulations. For multiscale transport, different solution schemes
can be assigned to different subdomains, including different angular discretizations, e.g. SN (discrete ordinates
method) or PN (spherical harmonics expansion method), varying number of energy groups, and different levels
of spatial resolution. Subdomain interfaces are automatically created by Rattlesnake and within this manual
are sometimes referred to as mortar interfaces. We are in the early stage of this development and future changes
are likely. Please always refer your latest manual for the multiscale parameters contained in this section.

4.8.1 is_mesh_split

Description: Whether or not the mesh is conforming
Data type: Logical

Default value: False

Syntax: TransportSystems/is_mesh_split

Note: If users are providing a conforming mesh for the multiscale simulation with more than one subdomain,
this parameter must be true. If the mesh has been properly split for the multiscale simulation, this parameter
must be false.
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4.8.2 show_multiscale_actions

Description: Whether or not to show the actions setting up the multiscale system
Data type: Logical
Default value: False

Syntax: TransportSystems/show_multiscale_actions

4.8.3 hide_mortar_variables

Description: Whether or not to hide variables defined on mortar interfaces from output system
Data type: Logical
Default value: False

Syntax: TransportSystems/hide_mortar_variables

4.8.4 angular_constraint_type

Description: How SN-PN interface condition are imposed

Data type: Enumeration (/under/)

Default value: under

Note: Advanced parameter. Users should use default unless they really know what they are doing.

Syntax: TransportSystems/angular_constraint_type

4.8.5 evaluate_mortar_aux

Description: Whether or not to evaluate mortar auxiliary variables
Data type: Logical

Default value: false

Syntax: TransportSystems/evaluate_mortar_aux

Note: Advanced parameter. Users should use default unless they really know what they are doing.

4.9 Discretization schemes

The user must at least provide one discretization scheme sub-block to specify the discretization schemes applied
for the parent transport system. More than one sub-blocks will invoke the multiscale transport capability.

143



4.9.1 scheme

Description: Scheme used to discretize the transport equation
Data type: Enumeration (see option in this note)

Default value: <required>

Syntax: TransportSystems/*/scheme

Note: The scheme parameter in the sub-block specifies the discretization scheme of the sub-block.. Valid
schemes are SAAF-CFEM-SN, SAAF-CFEM-PN, LS-CFEM-SN, LS-CFEM-PN, DFEM-SN, DFEM-PN, CFEM-
Diffusion and DFEM-Diffusion. The capability of all schemes are summarized in Table 1. Currently discretiza-
tion schemes are a valid zero-level input syntax item. However, this syntax should only be used for the purpose
of dumping valid parameters of schemes.

4.9.2 Neutron

If particle is neutron, parameters in this section can be included in the discretization scheme sub-block.

4921 mn_delay_groups

Description: Expected number of delayed neutron groups
Data type: Integer

Default value: 0

Syntax: TransportSystems/*/n_delay_groups

Note: Neutronic materials can either have delayed neutron data with this number of groups or have none.

4.9.2.2 fission_source_as_material

Description: Fission source is treated as a material property or an auxiliary variable
Data type: Logical

Default value: False

Syntax: TransportSystems/*/fission_source_as_material

Note: Fission source auxiliary variable will not be added if this parameter is true and fission source will be
represented as a material (recalculated on quadrature points whenever necessary). It does not affect the calcu-
lation.

4.9.2.3 linear_fsrc_in_time

Description: True to use linear interpolation of current and old fission source to evaluate DNPs, otherwise to
use the old fission source only

Data type: Logical
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Default value: True

Syntax: TransportSystems/*/fission_source_as_material

4.9.2.4 dnp_integration_scheme

Description: Integration scheme for DNP materials
Data type: enumeration (/exp/backwardEuler/CrankNicolson/)
Default value: exp

Syntax: TransportSystems/*/dnp_integration_scheme

4.9.2.5 explicit_fission

Description: True to make fission kernels operate on the old solution
Data type: Logical

Default value: false

Syntax: TransportSystems/*/explicit_fission

Note: This parameter has the same effect on fission kernels as for_transport_update. However it does not affect
the scattering kernels as for_transport_update does.

4.9.3 Thermal

When particle is thermal, parameters in this section can be included in the discretization scheme sub-block.

4.9.3.1 frequency_bounds

Description: Frequency bounds of all bands (or groups)
Data type: Vector of real

Default value: <required>

Syntax: TransportSystems/*/frequency_bounds

Note: The size of this parameter must be equal to G+1. The contained values must be ascending.

4.9.3.2 setup_temperature_equation

Description: True to set up the temperature equation
Data type: Logical
Default value: True

Syntax: TransportSystems/*/setup_temperature_equation
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4.9.3.3 T_family

Description: Family of FE shape functions for temperature
Data type: Enumeration (refer MOOSE syntax about Variables)
Default value: LAGRANGE

Syntax: TransportSystems/*/T_family

Note: This parameter is activated only when setup_temperature_equation is true.

4.9.3.4 T_order

Description: Order of FE shape functions for temperature

Data type: Enumeration (refer MOOSE syntax about Variables)
Default value: FIRST

Syntax: TransportSystems/*/T_order

Note: This parameter is activated only when setup_temperature_equation is true.

49.3.5 T_option

Description: Temperature variable option
Data type: enumeration (/T/T4/acT4/)
Default value: T

Syntax: TransportSystems/*/T_option

Note: This parameter is activated only when setup_temperature_equation is true.

49.3.6 T_scaling

Description: Scaling of the temperature variable
Data type: Real

Default value: 1

Syntax: TransportSystems/*/T_scaling

Note: This parameter is activated only when setup_temperature_equation is true.

4.9.3.7 thermal_conduction_eos

Description: Thermal conduction EoS (equation of state)
Data type: Vector of user object names

Default value: <empty>

Syntax: TransportSystems/*/thermal_conduction_eos

Note: This parameter contains EoS user objects for setting up the temperature equation. Empty means that no
time derivative and conduction term are added in the temperature equation. This parameter is activated only
when setup_temperature_equation is true.
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4.9.3.8 has_thermal_conduction

Description: True to include the thermal conduction
Data type: Logical

Default value: True

Syntax: TransportSystems/*/has_thermal_conduction

Note: This parameter is activated only when setup_temperature_equation is true.

4.9.3.9 heating_blocks

Description: Subdomains having an external heat source defined
Data type: Vector of subdomain names

Default value: <empty>

Syntax: TransportSystems/*/heating_blocks

Note: This parameter specifies mesh blocks which contain external heat sources. This parameter is activated
only when setup_temperature_equation is true.

4.9.3.10 heating sources

Description: External heat sources

Data type: Vector of function names

Default value: <empty>

Syntax: TransportSystems/*/heating_sources

Note: This parameter specifies strength of external heat sources. Its size must be equal to the size of heat-
ing_blocks. This parameter is activated only when setup_temperature_equation is true.

4.9.3.11 heating boundaries

Description: Boundaries with the fixed temperatures
Data type: Vector of boundary names

Default value: <empty>

Syntax: TransportSystems/*/heating_boundaries

Note: This parameter specifies mesh side sets which have fixed temperatures. This parameter is activated only
when setup_temperature_equation is true.

4.9.3.12 boundary_temperatures

Description: Boundary temperatures
Data type: Vector of function names

Default value: <empty>
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Syntax: TransportSystems/*/boundary_temperatures

Note: This parameter specifies temperatures on boundaries. Its size must be equal to the size of heating_boundaries.
This parameter is activated only when setup_temperature_equation is true.

4.9.3.13 temperature_update_on

Description: Determines when the temperature is updated within the MOOSE calculation cycle
Data type: enumeration (refer to MOOSE execute_on)

Default value: linear

Syntax: TransportSystems/*/temperature_update_on

Note: This parameter is activated only when setup_temperature_equation is true.

4.9.3.14 wuse_cgs

Description: True to use cgs otherwise metric units
Data type: Logical
Default value: False

Syntax: TransportSystems/*/use_cgs

49.4 CFEM-Diffusion

Among the following parameters, block, family, order, and verbose are the basic parameter that almost always
will have to be set, while the rest are cataloged advanced and typically users do not have to wprry about them.

4.9.4.1 block

Description: Subdomains on which this discretization scheme is applied
Data type: Vector of subdomain names

Default value: <empty>

Syntax: TransportSystems/*/block

Note: if this parameter is missing, the scheme is defined over the entire domain.

49.4.2 family

Description: Family of FE shape functions for primal variables
Data type: Enumeration (refer MOOSE syntax about Variables)
Default value: LAGRANGE
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Syntax: TransportSystems/*/family

Note: Primal variables are angular fluxes, angular flux moments and scalar fluxes for SN, PN and diffusion
approximation, respectively.

4.9.4.3 order

Description: Order of FE shape functions for primal variables
Data type: Enumeration (refer MOOSE syntax about Variables)
Default value: FIRST

Syntax: TransportSystems/*/order

4.9.44 group_collapsing

Description: Coarse group IDs of all energy groups
Data type: Vector of integers

Default value: <empty>

Syntax: TransportSystems/*/group_collapsing

Note: If this parameter is given, its size must be equal to G. Group index starts from 0. Numbers in this vector
must currently be non-decreasing. If this parameter is not given, number of coarse groups is equal to G and no
group collapsing will be done.

4.9.4.5 group_weights

Description: To apply different weights for the equations associated with each group
Data type: Vector of real

Default value: <empty>

Syntax: TransportSystems/*/group_weights

Note: If this parameter is given, its size must be equal to G. If the parameter is not given, all groups have the
default weight one.

4.9.4.6 collapse_scattering

Description: True to create in-group scattering source and use it in the scattering kernels
Data type: Logical
Default value: False

Syntax: TransportSystems/*/collapse_scattering
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4.9.4.7 balance_table

Description: True to generate balance table
Data type: Logical

Default value: False

Syntax: TransportSystems/*/balance_table

Note: Balance table is for all blocks specified in block.

4.9.4.8 balance_table_on

Description: When the balance table is evaluated and printed

Data type: enumeration (/initial / timestep_begin/timestep_end /nonlinear/linear/custom/, refer MOOSE syn-
tax about execute_on options)

Default value: timestep_end

Syntax: TransportSystems/*/balance_table_on

4.9.4.9 fixed_jacobian

Description: To indicate the Jacobian is constant throughout the simulation
Data type: Logical

Default value: False

Syntax: TransportSystems/*/fixed_jacobian

Note: If the Jacobian is constant throughout the simulation, setting this parameter to true can reduce the number
of Jacobian evaluations.

4.9.4.10 wverbose

Description: To control screen output related to the setup of the transport system
Data type: Enumeration (/0/1/2/3/)

Default value: 1

Syntax: TransportSystems/*/verbose

Note: The bigger the verbose number is, the more detailed outputs on screen are. Note that when the number
is bigger than 1, angular quadrature and spherical harmonics data will be dumped into “aq.txt” and “shm.txt”
respectively.

4.9.411 prefix

Description: Prefix for MOOSE objects used by the transport system
Data type: String

Default value: Name of the sub-block
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Syntax: TransportSystems/*/ prefix

Note: Here MOOSE objects include Kernels, AuxKernels, DiracKernels, DGKernels, BCs, Materials, MultiApps
and Transfers. This parameter is exposed to users only for the purpose of avoiding name conflict in multi-
physics simulations where users cannot change how these MOOSE objects in other physics are named.

4.9.4.12 prefix_variables

Description: Whether or not to add prefix for automatically added variables
Data type: Logical

Default value: False

Syntax: TransportSystems/*/prefix_variables

Note: This parameter is exposed to users only for the purpose of avoiding name conflict in multiphysics sim-
ulations where users cannot change how variables in other physics are named. If this parameter is true, prefix
will be used as the prefix.

4.9.4.13 material_prop_namespace

Description: Prefix for transport material properties
Data type: string

Default value: empty string

Syntax: TransportSystems/*/material_prop_namespace

Note: This parameter is exposed to users only for the purpose of avoiding name conflict in multiphysics simu-
lations where users cannot change how material properties in other physics are named.

4.9.4.14 save_residual

Description: True to save residual into auxiliary variables
Data type: Logical

Default value: False

Syntax: TransportSystems/*/save_residual

Note: This parameter is deprecated.

4.9.4.15 assemble_scattering_jacobian

Description: True for assembling Jacobian contributions from scattering
Data type: Logical

Default value: False

Syntax: TransportSystems/*/assemble_scattering_jacobian

Note: Whether or not the scattering term is considered during assembling the Jacobian. Note, that it also de-
pends on what preconditioning matrix is used, since, by default, Rattlesnake only assembles the block-diagonal
Jacobian, where each block corresponds to a variable. In this case cross-group scattering contributions to the
Jacobian are not considered even if this parameter is true.
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4.9.416 vacuum_extrapolation_factor

Description: Vacuum extrapolation factor for all vacuum side sets and all groups
Data type: Real
Default value: 2/3

Syntax: TransportSystems/*/vacuum_extrapolation_factor

4.9.4.17 diffusion_coefficient_type

Description: Diffusion coefficient type

Data type: Enumeration (/scalar/vector/tensor/)
Default value: scalar

Syntax: TransportSystems/*/diffusion_coefficient_type

Note: Users need to provide diffusion coefficients of this type in the transport materials, otherwise implicit
conversion will be invoked:

D, scalr

D={ 3%,Dj vector 26
% Z?:l 213»:1 D;;, tensor
D, scalar

D;=<{ Dj vector i —=1,2,3 @)
Z]“?’:l D;;j, tensor
D(Si,j, scalar

Di,j = Diéi,]», vector ,i=1,2,3;7=1,2,3. (28)

Di,]-, tensor

4.9.4.18 adjoint _fluxes

Description: List of adjoint fluxes ordered by group index
Data type: Vector of strings

Default value: <empty>

Syntax: TransportSystems/*/adjoint_fluxes

Note: This parameter is only used for IQS executioner and is currently under development.

4.9.4.19 transport_wrapper

Description: The user object for adding derived material properties with a high-order system
Data type: string

Default value: <empty>

Syntax: TransportSystems/*/transport_wrapper

Note: This parameter is used for calculations with the nonlinear diffusion acceleration. It can be either an input
file name or a valid user object name for the high order transport system. If the input file name is provided,
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Rattlesnake will construct the user object on the fly. If users want to have more control on how the user object
behaves, they can add the user object manually and pass the name to the diffusion system here. Refer to
SAAFWrapper and LSWrapper for more details. This parameter will cause material properties of drift vector
and vacuum boundary coefficient to be declared and corresponding terms be added in the equation. Users are
referred to [16] for more explanations.

4.9.5 DFEM-Diffusion

This discretization scheme shares most of parameters in CFEM-Diffusion except the followings:

e The default value for family is changed to L2_LAGRANGE.
e transport_wrapper is not valid.
e there are more parameters: DGType, penalty, transport_multiapp_file and NDA _type.

4.9.5.1 block

Refer to block in CFEM-Diffusion.

4.9.5.2 family

Refer to family in CFEM-Diffusion.
Note: The default value for family is changed to L2.LAGRANGE.

4.9.5.3 order

Refer to order in CFEM-Diffusion.

4.9.5.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.5.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.5.6 collapse_scattering

Refer to collapse_scattering in CFEM-Diffusion.

4.9.5.7 balance_table

Refer to balance_table in CFEM-Diffusion.
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4.9.5.8 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.

4.9.5.9 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.5.10 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.5.11 prefix

Refer to prefix in CFEM-Diffusion.

4.9.5.12 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.

4.9.5.13 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.5.14 save_residual

Refer to save_residual in CFEM-Diffusion.

4.9.5.15 assemble_scattering_jacobian

Refer to assemble_scattering_jacobian in CFEM-Diffusion.

4.9.5.16 vacuum_extrapolation_factor

Refer to vacuum_extrapolation_factor in CFEM-Diffusion.

4.9.5.17 diffusion_coefficient_type

Refer to diffusion_coefficient_type in CFEM-Diffusion.

4.9.5.18 adjoint _fluxes

Refer to adjoint_fluxes in CFEM-Diffusion.
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4.9.519 DGType

Description: DG diffusion type (SIP/NIP/IIP - symmetric interior penalty /non-symmetric IP/incomplete IP)
Data type: Enumeration (/SIP/NIP/IIP/)
Default value: SIP

Syntax: TransportSystems/*/DGType

4.9.5.20 penalty

Description: Penalty function type
Data type: Enumeration (/std/)
Default value: std

Syntax: TransportSystems/*/penalty

4.9.521 transport_multiapp_file

Description: The input file name of the SN sub problem
Data type: string

Default value: <empty>

Syntax: TransportSystems/*/transport_multiapp_file

Note: A valid file name will invoke the NDA calculation with a high-order transport system set up by this input
file.

4.9.5.22 NDA _type

Description: NDA type

Data type: Enumeration (/syw/traditional_cmfd /pcmfd/)
Default value: traditional_cmfd

Syntax: TransportSystems/*/NDA _type

Note: Refer to the Rattlesnake theory manual for more information.

4.9.6 SAAF-CFEM-SN

This discretization scheme shares the following parameters in CFEM-Diffusion: block, family, order, group_collapsing,
group_weights, collapse_scattering, balance_table, balance_table_on, fixed_jacobian, verbose, prefix, prefix_variables, mate-
rial_prop_namespace, assemble_scattering_jacobian and larsen_trahan.
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4.9.6.1 block

Refer to block in CFEM-Diffusion.

4.9.6.2 family

Refer to family in CFEM-Diffusion.

4.9.6.3 order

Refer to order in CFEM-Diffusion.

4.9.6.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.6.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.6.6 collapse_scattering

Refer to collapse_scattering in CFEM-Diffusion.

4.9.6.7 balance_table

Refer to balance_table in CFEM-Diffusion.

4.9.6.8 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.

4.9.6.9 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.6.10 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.6.11 prefix

Refer to prefix in CFEM-Diffusion.
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4.9.6.12 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.

4.9.6.13 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.6.14 vacuum_bc_type

Description: Vacuum or surface source boundary condition type
Data type: Enumeration (/saaf/even/odd/pe/)

Default value: saaf

Syntax: TransportSystems/*/vacuum_bc_type

Note: Users are referred to [17] for more explanations.

4.9.6.15 reflecting_bc_type

Description: Reflecting boundary condition type

Data type: Enumeration (/saaf/even/odd/symmetric/non-sym/)
Default value: saaf

Syntax: TransportSystems/*/reflecting_bc_type

Note: users are referred to [17] for more explanations. It is noted that this parameter is invalid for diffusion
approximation.

4.9.6.16 AQtype

Description: Angular quadrature type
Data type: Enumeration (/Level-Symmetric/Gauss-Chebyshev/Bickley3-Optimized /)
Default value: Level-Symmetric
Syntax: TransportSystems/*/AQtype
Note:
o Level-Symmetric only support two-dimensional (2D) and three-dimensional (3D) calculations. The num-

ber of directions, depending on AQorder, is AQorderx (AQorder+2)/2 in 2D and AQorder x (AQorder+2) in
3D.

e Gauss-Chebyshev supports one-dimensional (1D), 2D and 3D calculations. The number of directions is
equal to NPolarx2 in 1D, NPolar x NAzmthl x4 in 2D and NPolarx NAzmthlx8 in 3D. This quadrature is
simply the Gaussian quadrature in 1D.

e Bickley3-Optimized only supports 2D calculations. The number of directions is equal to NPolar x NAzmthl x 4.
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One constraint currently in our Sn calculations is that the reflective directions of all directions in the angular
quadrature of all reflective boundary sides characterized with their unit perpendicular norm (#) must be in the
angular quadrature. All of the three quadratures satisfy this condition when 7i = €y, 7i = €, or 7i = &, which
covers most of practical calculations. Gauss-Chebyshev and Bickley3-Optimized can also find usages when
the z-component of 7i is zero. In such cases, users can adjust NAzmthl to make the constraint satisfied. The
azimuthal angles are distributed evenly with the two quadratures. The angles will be (2i + 1) x 7t/NAzmthl/4,
i =0, ,4xNAzmthl-1, where 4 is the number of octant. For example, if NAzmthl is equal to 3, there will be
3 x 4 = 12 azimuthal angles, started from 7r/12 with increment 7r/6. Three will be angles with 15, 45 and 75
degrees in the first octant. This will make all reflecting angles on a surface in parallel with z-axis but 30, 45 or
75 degree tilted with respect to x-axis, also in the quadrature. All quadratures with NAzmthl being equal to 3n,
where 7 is any natural number, satisfy the constraint for these surfaces as well.

4.9.6.17 AQorder

Description: The order of level-symmetric angular quadrature

Data type: Enumeration (/2/4/6/8/10/12/14/16/18/20/22/24/26/28/30/)
Default value: 8

Syntax: TransportSystems/*/ AQorder

Note: This parameter is only valid for level symmetric quadrature. It will be ignored for other quadrature types
even if provided.

4.9.6.18 NPolar

Description: The number of polar angles of a production angular quadrature
Data type: Integer

Default value: 2

Syntax: TransportSystems/*/NPolar

Note: This parameter must be greater than 0. It is used by production quadrature types including Gauss-
Chebyshev and Bickley3-Optimized only. It will be ignored for other quadrature types even if provided.

4.9.6.19 NAzmthl

Description: The number of azimuthal angles of a production angular quadrature
Data type: Integer

Default value: 3

Syntax: TransportSystems/*/NAzmthl

Note: This parameter must be greater than 0. It is used by production quadrature types including Gauss-
Chebyshev and Bickley3-Optimized only. It will be ignored for other quadrature types even if provided.

4.9.6.20 NA

Description: The maximum order of scattering anisotropy

Data type: Integer
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Default value: 0
Syntax: TransportSystems/*/NA

Note: This parameter must be greater than or equal to zero with zero meaning isotropic scattering. This parame-
ter also controls how many angular flux moments are to be evaluated: NA+1 in one-dimension, (NA+1) x (NA+2)/2
in two-dimension and (NA+1)? in three-dimension.

4.9.6.21 initialize_angular_flux

Description: True to initialize angular flux to one
Data type: Logical

Default value: False

Syntax: TransportSystems/*/initialize_angular_flux

Note: By default all angular flux will be initialized to zero. This parameter is used for ensuring correct evalua-
tion of the closure terms in the diffusion equation when NDA is used.

4.9.6.22 hide_angular_flux

Description: True to not output angular flux
Data type: Logical
Default value: False

Syntax: TransportSystems/*/hide_angular_flux

4.9.6.23 hide_higher_flux_moment

Description: True to hide angular flux moments with order higher than the inputted value
Data type: Integer

Default value: Maximum value of an unsigned integer

Syntax: TransportSystems/*/hide_higher_flux_ moment

Note: This parameter must be greater than or equal to 0, which means scalar fluxes are not allowed to be
hidden.

4.9.6.24 flux_moment_as_material

Description: True to use material properties for flux moments
Data type: Logical

Default value: False

Syntax: TransportSystems/*/flux_moment_as_material

Note: This parameter does not affect the solver or the problem to be solved.
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4.9.6.25 for_transport_update

Description: True to set up the transport system for transport update
Data type: Logical

Default value: False

Syntax: TransportSystems/*/for_transport_update

Note: users are referred to [16] for more explanations. Some executioner require this parameter to be true.

4.9.6.26 explicit_on_boundary

Description: True to use old angular fluxes for evaluating implicit BCs (reflecting or white and etc.) during
transport update

Data type: Logical

Default value: False

Syntax: TransportSystems/*/explicit_on_boundary

Note: users are referred to [16, 18] for more explanations.

4.9.6.27 assemble_scattering_jacobian

Refer to assemble_scattering_jacobian in CFEM-Diffusion.

4.9.6.28 tau

Description: SUPG stabilization parameter for void or near-void
Data type: Real

Default value: 0.5

Syntax: TransportSystems/*/tau

Note: When total mean free path in an element evaluated with the local element size & is greater than this
number, the inverse of the total cross section is used; otherwise h over this number is used for stabilization.
Users should consider using smaller number for sufficient stabilization. Users are referred to [18] for more
explanations.

4.9.6.29 show_drift

Description: True to show drift vectors and vacuum coefficients on quadrature points
Data type: Logical

Default value: false

Syntax: TransportSystems/*/show _drift

Note: This quantities are used as diffusion closure in NDA calculations.
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4.9.6.30 nda_damping

Description: Damping factor (under-relaxation factor) for evaluating drift vectors and vacuum boundary coef-
ficients for diffusion closure.

Data type: Real

Default value: 0

Syntax: TransportSystems/*/nda_damping

4.9.6.31 larsen_trahan

Description: Triggers computation of Larsen-Trahan mode for computation of tensor diffusion coefficients. For
this purpose a problem is solved without scattering and fission, and with a unit source. Output cross sections
files are created/overridden. The file names are formed as

<input file base> +_larsen_trahan_material_out- + <cnm | mnm> +.xml

Existing files are read and the correct entry is modified. If the file does not exist a new MixedMultigroupLibrary
is created and written to the file.

Data type: bool
Default value: 0
Syntax: TransportSystems/*/larsen_trahan

Note: Can only be used with particle type common. Must use steady executioner or executioner supporting
_for_transport_update. Only supports ConstantNeutronicsMaterial or MixedNeutronicsMaterial.

4.9.7 SAAF-CFEM-PN

This discretization scheme shares the following parameters in CFEM-Diffusion: block, family, order, group_collapsing,
group_weights, collapse_scattering, balance_table, balance_table_on, fixed_jacobian, verbose, prefix, prefix_variables and
material_prop_namespace. It also shares the following parameters in SAAF-CFEM-SN: vacuum_bc_type, reflect-
ing_bc_type and hide_higher_flux_moment.

49.7.1 block

Refer to block in CFEM-Diffusion.

4.9.7.2 family

Refer to family in CFEM-Diffusion.

4.9.7.3 order

Refer to order in CFEM-Diffusion.
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4.9.7.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.7.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.7.6 collapse_scattering

Refer to collapse_scattering in CFEM-Diffusion. It is noted that the default value of collapse_scattering is changed
to true.

4.9.7.7 balance_table

Refer to balance_table in CFEM-Diffusion.

4.9.7.8 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.

4.9.7.9 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.7.10 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.7.11 prefix

Refer to prefix in CFEM-Diffusion.

4.9.7.12 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.

4.9.7.13 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.7.14 vacuum_bc_type

Refer to vacuum_bc_type in SAAF-CFEM-SN.
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4.9.7.15 reflecting_bc_type

Refer to reflecting_bc_type in SAAF-CFEM-SN.

4.9.7.16 parity_option

Description: To select what the primal variable should be for PN
Data type: Enumeration (/all/even/)
Default value: all

Syntax: TransportSystems/*/parity_option

49.717 PN

Description: PN order

Data type: Integer

Default value: 0

Syntax: TransportSystems/*/PN

Note: When parity_option is all, this parameter can be any number greater than or equal to 0. When par-
ity_option is even, this parameter must be an odd non-negative number.

49.7.18 NA

Description: the maximum order of scattering anisotropy
Data type: Integer

Default value: 0

Syntax: TransportSystems/*/NA

Note: This parameter must be greater than or equal to zero and less than or equal to PN.

4.9.7.19 hide_higher_flux_moment

Refer to hide_higher_flux_moment in SAAF-CFEM-SN.

4.9.7.20 force_secondary_parity

Description: True to force the evaluation of the secondary parity materials when parity_option is not all
Data type: Logical
Default value: False

Syntax: TransportSystems/*/force_secondary_parity
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4.9.7.21 initialize_flux_moment

Description: True to initialize flux moments with one
Data type: Logical
Default value: False

Syntax: TransportSystems/*/initialize_flux_moment

4.9.8 LS-CFEM-SN

This discretization scheme shares the following parameters in CFEM-Diffusion: block, family, order, group_collapsing,
group_weights, balance_table, balance_table_on, fixed_jacobian, verbose, prefix, prefix_variables, material_prop_namespace
and assemble_scattering jacobiansn. It also shares the following parameters in SAAF-CFEM-SN: AQtype, AQorder,
NPolar, NAzmthl, NA, initialize_angular_flux, hide_angular_flux, hide_higher_flux_moment, for_transport_update, ex-
plicit_on_boundary and show _drift.

4.9.8.1 block

Refer to block in CFEM-Diffusion.

4.9.8.2 family

Refer to family in CFEM-Diffusion.

4.9.8.3 order

Refer to order in CFEM-Diffusion.

4.9.8.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.8.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.8.6 balance_table

Refer to balance_table in CFEM-Diffusion.

4.9.8.7 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.
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4.9.8.8 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.8.9 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.8.10 prefix

Refer to prefix in CFEM-Diffusion.

4.9.8.11 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.

4.9.8.12 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.8.13 AQtype

Refer to AQtype in SAAF-CFEM-SN.

4.9.8.14 AQorder

Refer to AQorder in SAAF-CFEM-SN.

4.9.8.15 NPolar

Refer to NPolar in SAAF-CFEM-SN.

4.9.8.16 NAzmthl

Refer to NAzmthl in SAAF-CFEM-SN.

4.9.8.17 NA

Refer to NA in SAAF-CFEM-SN.

4.9.8.18 initialize_angular_flux

Refer to initialize_angular_flux in SAAF-CFEM-SN.
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4.9.8.19 hide_angular_flux

Refer to hide_angular_flux in SAAF-CFEM-SN.

4.9.8.20 hide_higher_flux_moment

Refer to hide_higher_flux_- moment in SAAF-CFEM-SN.

4.9.8.21 flux_moment_as_material

Refer to flux_moment_as_material in SAAF-CFEM-SN.

4.9.8.22 for_transport_update

Refer to for_transport_update in SAAF-CFEM-SN.

4.9.8.23 explicit_.on_boundary

Refer to explicit_on_boundary in SAAF-CFEM-SN.

4.9.8.24 assemble_scattering_jacobian

Refer to assemble_scattering_jacobian in CFEM-Diffusion.

4.9.8.25 show_drift

Refer to show_drift in SAAF-CFEM-SN.

4.9.8.26 strong_boundary_condition

Description: True to impose the boundary condition strongly
Data type: Logical

Default value: False

Syntax: TransportSystems/*/strong_boundary_condition

Note: Users are referred to [19] for more details.

4.9.8.27 weak_bc_type

Description: To select different types of weakly imposed boundary condition
Data type: Enumeration (/1/2/3/4/5/6/7/)
Syntax: TransportSystems/*/weak_bc_type

Note: Users are referred to [19] for more details.
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4.9.8.28 weak_bc_constant

Description: The constant factor for weak BCs
Data type: Real

Default value: 1

Syntax: TransportSystems/*/weak_bc_constant

Note: Users are referred to [19] for more details.

49.9 LS-CFEM-PN

This discretization scheme shares the following parameters in CFEM-Diffusion: block, family, order, group_collapsing,
group_weights, collapse_scattering, balance_table, balance_table_on, fixed_jacobian, verbose, prefix, prefix_variables and
material_prop_namespace. It also shares the following parameters in SAAF-CFEM-SN: vacuum_bc_type, reflect-
ing_bc_type and hide_higher_flux_moment. It also shares the following parameters in SAAF-CFEM-PN: PN, NA,
force_secondary_parity, initialize_flux_moment.

This scheme does not work with transient equation_type and with Neutron currently.

4.9.9.1 block

Refer to block in CFEM-Diffusion.

4.9.9.2 family

Refer to family in CFEM-Diffusion.

4.9.9.3 order

Refer to order in CFEM-Diffusion.

4.9.9.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.9.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.9.6 collapse_scattering

Refer to collapse_scattering in CFEM-Diffusion. It is noted that the default value of collapse_scattering is changed
to true.
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4.9.9.7 balance_table

Refer to balance_table in CFEM-Diffusion.

4.9.9.8 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.

4.9.9.9 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.9.10 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.9.11 prefix

Refer to prefix in CFEM-Diffusion.

4.9.9.12 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.

4.9.9.13 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.9.14 vacuum_bc_type

Refer to vacuum_bc_type in SAAF-CFEM-SN.

4.9.9.15 reflecting_bc_type

Refer to reflecting_bc_type in SAAF-CFEM-SN.

4.9.9.16 parity_option

Refer to parity_option in SAAF-CFEM-PN.

49.9.17 PN

Refer to PN in SAAF-CFEM-PN.
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49.9.18 NA

Refer to NA in SAAF-CFEM-PN.

4.9.9.19 hide_higher_flux_moment

Refer to hide_higher_flux_moment in SAAF-CFEM-SN.

4.9.9.20 force_secondary_parity

Refer to force_secondary_parity in SAAF-CFEM-PN.

4.9.9.21 initialize_flux_moment

Refer to initialize_flux_moment in SAAF-CFEM-PN.

4.9.9.22 weak_bc_type

Refer to weak_bc_type in LS-CFEM-SN.

The default value is changed to 7.

4.9.9.23 weak_bc_constant

Refer to weak_bc_constant in LS-CFEM-SN.

499.24 NS

Description: The maximum spherical harmonics order of external source moments to keep
Data type: Integer

Default value: 0

Syntax: TransportSystems/*/NS

Note: Zero means that only the isotropic part of the external source is kept.

4910 DFEM-SN

This discretization scheme shares the following parameters in CFEM-Diffusion: block, family, order, group_collapsing,
group_weights, balance_table, balance_table_on, fixed_jacobian, verbose, prefix, prefix_variables and material _prop_namespace.
It also shares the following parameters in SAAF-CFEM-SN: AQtype, AQorder, NPolar, NAzmthl, NA, initial-

ize_angular flux, hide_angular_flux, hide_higher_flux_moment, for_transport_update, explicit_on_boundary and larsen_trahan
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4.9.10.1 block

Refer to block in CFEM-Diffusion.

4.9.10.2 family

Refer to family in CFEM-Diffusion. It is noted that the default value of family is changed to L2_LAGRANGE.

4.9.10.3 order

Refer to order in CFEM-Diffusion.

4.9.10.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.10.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.10.6 balance_table

Refer to balance_table in CFEM-Diffusion.

4.9.10.7 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.

4.9.10.8 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.10.9 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.10.10 prefix

Refer to prefix in CFEM-Diffusion.

4.9.10.11 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.
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4.9.10.12 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.10.13 AQtype

Refer to AQtype in SAAF-CFEM-SN.

4.9.10.14 AQorder

Refer to AQorder in SAAF-CFEM-SN.

4.9.10.15 NPolar

Refer to NPolar in SAAF-CFEM-SN.

4.9.10.16 NAzmthl

Refer to NAzmthl in SAAF-CFEM-SN.

4.9.10.17 NA

Refer to NA in SAAF-CFEM-SN.

4.9.10.18 initialize_angular_flux

Refer to initialize_angular_flux in SAAF-CFEM-SN.

4.9.10.19 hide_angular_flux

Refer to hide_angular_flux in SAAF-CFEM-SN.

4.9.10.20 hide_higher_flux_moment

Refer to hide_higher_flux_- moment in SAAF-CFEM-SN.

4.9.10.21 flux_moment_as_material

Refer to flux_moment_as_material in SAAF-CFEM-SN.

4.9.10.22 for_transport_update

Refer to for_transport_update in SAAF-CFEM-SN.
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4.9.10.23 explicit_on_boundary

Refer to explicit_on_boundary in SAAF-CFEM-SN.

4.9.10.24 larsen_trahan

Refer to larsen_trahan in SAAF-CFEM-SN.

49.11 DFEM-PN

This discretization scheme shares the following parameters in CFEM-Diffusion: block, family, order, group_collapsing,
group_weights, balance_table, balance_table_on, fixed _jacobian, verbose, prefix, prefix_variables and material _prop_namespace.

It also shares the following parameters in SAAF-CFEM-SN: vacuum_bc_type, reflecting_bc_type and hide_higher_flux_moment.
It also shares the following parameters in SAAF-CFEM-PN: PN, NA, force_secondary_parity, initialize_flux_moment.

4.9.11.1 block

Refer to block in CFEM-Diffusion.

49.11.2 family

Refer to family in CFEM-Diffusion. It is noted that the default value of family is changed to L2._ LAGRANGE.

4.9.11.3 order

Refer to order in CFEM-Diffusion.

4.9.11.4 group_collapsing

Refer to group_collapsing in CFEM-Diffusion.

4.9.11.5 group_weights

Refer to group_weights in CFEM-Diffusion.

4.9.11.6 balance_table

Refer to balance_table in CFEM-Diffusion.

4.9.11.7 balance_table_on

Refer to balance_table_on in CFEM-Diffusion.
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4.9.11.8 fixed_jacobian

Refer to fixed_jacobian in CFEM-Diffusion.

4.9.11.9 wverbose

Refer to verbose in CFEM-Diffusion.

4.9.11.10 prefix

Refer to prefix in CFEM-Diffusion.

4.9.11.11 prefix_variables

Refer to prefix_variables in CFEM-Diffusion.

4.9.11.12 material_prop_namespace

Refer to material_prop_namespace in CFEM-Diffusion.

4.9.11.13 vacuum_bc_type

Refer to vacuum_bc_type in SAAF-CFEM-SN.

4.9.11.14 reflecting bc_type

Refer to reflecting_bc_type in SAAF-CFEM-SN.

4.9.11.15 parity_option

Refer to parity_option in SAAF-CFEM-PN.

49.11.16 PN

Refer to PN in SAAF-CFEM-PN.

49.11.17 NA

Refer to NA in SAAF-CFEM-PN.

4.9.11.18 hide_higher_flux_moment

Refer to hide_higher_flux_moment in SAAF-CFEM-SN.
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4.9.11.19 force_secondary_parity

Refer to force_secondary_parity in SAAF-CFEM-PN.

4.9.11.20 initialize_flux_moment

Refer to initialize_flux_moment in SAAF-CFEM-PN.

49.11.21 NS

Refer to NS in LS-CFEM-PN.

4.9.11.22 filter_type

Description: The type of filter to use
Data type: Enumeration (/none/Lanczos/SSpline/Exp)
Default value: none

Syntax: TransportSystems/*/filter_type

4.9.11.23 filter_strength_func

Description: The function to use as the filter strength
Data type: String
Default value: <empty>

Syntax: TransportSystems/*/filter_strength_func

4.9.11.24 exp filter_order

Description: The order of the exponential filter to use
Data type: Integer

Default value: 1

Syntax: TransportSystems/*/exp_filter_order

Note: This parameter is useful only if filter_type is Exp.

4.9.11.25 exp_filter_const

Description: The logarithm of the machine accuracy
Data type: Integer

Default value: -14

Syntax: TransportSystems/*/exp_filter_const

Note: This parameter is useful only if filter_type is Exp.
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4.9.11.26 removal_lumping

Description: True to lump the removal terms
Data type: Logical
Default value: false

Syntax: TransportSystems/*/removal_lumping

410 Summary of MOOSE objects added by TransportSystems

Rattlesnake is an open system in a sense that users can inject more MOOSE objects, including variables, mate-
rials, postprocessors and etc., into the system and can retrieve all MOOSE objects contained by Rattlesnake for
post-processing purpose. To this regard, it is needed to summarize the MOOSE objects added by Rattlesnake.
All these objects can be seen on the screen print-out during the setup stage when verbose is greater than 1.
Name of material properties can be obtained with Debug/show_material_props to true. It is noted that not all
objects added by Rattlesnake are listed in this manual. Only those might useful to users are given.

4.10.1 Primal variables

The primal variables added with transport systems are listed in Table 16 and Table 17. It is noted that the
energy group index g<g> means the variables are added for all groups with ¢ = 0,---,G — 1, where G
is the number of coarse energy groups specified by G and group_collapsing. The double spherical harmonics
index L<1>_M<m> means the variable are added for all spherical harmonics with m = low(l),--- ,up(l);] =
0,---,PN, where low(l) is 0, 0 and —! and up(l) is 0, | and ! for one-dimension, two-dimension and three-
dimension respectively and PN is the spherical harmonics order specified by PN. When parity_option is even,
only variables with even | are added. The streaming direction index d<d> means the variables are added for
all streaming directions specified by the angular quadrature. Temperature variable is added for Thermal when
setup_temperature_equation is true.

Table 16 Primal variables of neutron transport systems.

Meaning Name Scheme

Scalar flux sflux_g<g> CFEM-Diffusion
DFEM-Diffusion

Angular flux moment  flux moment_g<g>_L<I>M<m> SAAF-CFEM-PN
LS-CFEM-PN

Angular flux aflux_g<g>_d<d> SAAF-CFEM-SN
LS-CFEM-SN
DFEM-SN

4.10.2 Auxiliary variables

The auxiliary variables added with transport systems are listed in Table 18 and Table 19. The delayed neu-
tron group index i<i> means the variables are added for all delayed neutron groups withi = 0,---,I -1,
where [ is the number of delayed neutron groups specified by n_delay_groups. Angular flux moments are added
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Table 17 Primal variables of thermal radiation transport systems.

Meaning Name Scheme
Radiation density Eg<g> CFEM-Diffusion
Angular flux moment E_g<g>_L<I>M<m> DFEM-PN
Specific intensity specific_intensity_g<g>_d<d> SAAF-CFEM-SN
Temperature T _option

for SN schemes with the maximum order being NA. Temperature variable is added for Thermal only when
setup_temperature_equation is true. Prompt fission source and delayed neutron precursors are added for Neutron
only when fission_source_as_material is false. Adjoint fission source is added for Neutron only when SAAF-
CFEM-SN scheme is used and both for_adjoint and for_math_adjoint are true.

Table 18 Auxiliary variables of neutron transport systems.

Meaning Name Scheme

Angular flux moment flux moment_g<g>_L<I> M<m> SAAF-CFEM-SN
LS-CFEM-SN
DFEM-SN

Prompt fission source fission_source

Delayed neutron precursor dnp_i<i>

Adjoint fission source fission_source_adj

Table 19 Auxiliary variables of thermal radiation transport systems.

Meaning Name Scheme

Angular flux moment E_g<g>_L<l>M<m> SAAF-CFEM-SN

Temperature temperature
Planck emission total_emission
Radjiation heating radiation_heat_source

Radiative equilibrium  radiative_equilibrium

4.10.3 Material properties

In-group scattering sources for all groups and all spherical harmonics are evaluated when collapse_scattering
is true. It is noted that the schemes supporting this parameter are CFEM-Diffusion, DFEM-Diffusion, SAAF-
CFEM-SN, SAAF-CFEM-PN and LS-CFEM-PN. The single spherical harmonics index p is related with the
double index (I, m) as

I, 1D
p=9 W im 2D (29)
?+14+m, 3D
The total number of the scattering sources P is
L 1D

P=Gx (L+1)(L+2) 2D

7

I , (30)
(L+1)%, 3D
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where L is NA. G is the number of coarse groups specified by G and group_collapsing. Typically scattering sources
are evaluated with the current solution. But they are evaluated with the old solution when for_transport_update
is true for SAAF-CFEM-SN scheme.

Material properties of prompt fission source, delayed neutron precursor (DNP) concentrations are evaluated
when fission_source_as_material is true for Neutron transport. Material properties of angular flux moments
present only for DFEM-SN scheme and flux_moment_as_material is true. Secondary parity moments of PN
schemes, SAAF-CFEM-PN and LS-CFEM-PN, are evaluated as material properties when parity_option is set to
even and when the scattering cross section of the corresponding order is nonzero or force_secondary_parity is set
to true. Boundary out-going partial current is only evaluated for SN schemes, SAAF-CFEM-SN, LS-CFEM-SN
and DFEM-SN, on the white boundaries specified by WhiteBoundary.

Table 20 Material properties of transport systems.

Meaning Name Scheme Stateful = Volumetric

In-group scattering source scattering_source_p<p>_g<g> CFEM-Diffusion  No Yes
DFEM-Diffusion
SAAF-CFEM-SN
SAAF-CFEM-PN

LS-CFEM-PN
Prompt fission source fission_source Neutron No Yes
Delayed neutron precursor dnp_i<i> Neutron Yes Yes
Angular flux moments flux_ moment_g<g>_L<I>_M<m> DFEM-SN No Yes
Secondary parity moments flux moment_g<g>_L<l>M<m> SAAF-CFEM-PN No Yes
LS-CFEM-PN
SAAF SN stabilization parameter T tau-g<g> SAAF-CFEM-SN  No Yes
|#1], of all sides I1norm normals DFEM-PN No No
ﬁg,qlg = % of all sides averaged normal DFEM-Diffusion No No
Boundary out-going partial current out_current_g<g> SAAF-CFEM-SN  No No
LS-CFEM-SN
DFEM-SN
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5 Other Non-MOOSE Syntax

5.1 PKE

The point-kinetics equation (PKE) is

dn(t) _p—B v,

Fray n—l—i:El/\lcl, (31)
dei(t) _ Bi i

dt _Xn _)Llclrl - ]-/ /I/ (32)

where n(t) is the neutron population and c;(t) are the delayed neutron precursor (DNP) concentrations; I is
the total number of DNP groups. p, A, B; and A; are the reactivity, neutron generation time, DNP fractions and
DNP decay constants. They are all potentially time dependent. The total DNP fraction g = Y-!_; ;. The initial
condition for PKE is

n(t=*t) =ng (33)
Ci(t = tl) :Ci,Oli = 1/ Tty I/ (34)

where 19 and c; ¢ are the solutions at the starting time t;. Typically we assume the DNP concentrations reach
the equilibrium condition at the starting time, i.e.

clt=1t) :[&"no,i: 1,---,L (35)
1

The equation is set up with the PKE input block with Rattlesnake. n(t) and ¢;(t),i = 1,-- - , I are treated as two
primal scalar variables with order one and I respectively. It is users responsibility to provide initial conditions
for these two scalar variables. Optionally, users can indicate the initial equilibrium condition to let Rattlesnake
add the initial condition for DNPs ¢;(t),i = 1,---,I. p, A, B;,i = 1,---,I and A;,i = 1,---,I are treated
as the auxiliary scalar variables with the correct order. It is users responsibility to provide initial conditions,
and/or auxiliary scalar kernels (if they change with time) for setting values for these variables. Few scalar
initial conditions in MOOSE can be used for all these scalar variables as showed in Fig. 16. Few scalar auxiliary

| ScalarlnitialCondition |

]

| FunctionScalarIC | |Sca|arComponentIC| | ScalarConstantIC |

Figure 16 Scalar initial conditions in MOOSE.

kernels in MOOSE can be used to set values for the auxiliary scalar variables as showed in Fig. 17.

Rattlesnake IQS executioner has the capability of dumping the lumped PKE parameters (o, A, B;,i = 1,---,1
and A;,i =1, - -, I) with the spatial kinetics calculations. Users can use these dumped parameters to reproduce
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| AuxNodalScalarKernel |

ConstantScalarAux |

AuxScalarKernel

FunctionScalarAux |

| QuotientScalarAux |

Figure 17 Scalar auxiliary kernels in MOOSE.

the transient history of the neutron production rate in PKE. The PKE input block contains an optional parameter,
indicating in which file the dumped PKE parameters are stored, to facilitate calculations with the dumped
parameters. If this parameter is set, the initial condition and auxiliary scalar kernels for these PKE parameters
will be automatically added by Rattlesnake.

5.1.1 n_delayed_groups

Description: Number of groups of delayed neutron precursors
Data type: Integer

Default value: <required>

Syntax: PKE/n_delayed_groups

Note: This parameter will be used to specify the order of three scalar variables: ¢;, ;,A;,i =1,---, L.

5.1.2 amplitude_variable

Description: Amplitude primal scalar variable
Data type: String

Default value: <required>

Syntax: PKE/amplitude_variable

Note: A first order primal scalar variable will be added by Rattlesnake with this name for the amplitude variable
n.

5.1.3 DNP_variable

Description: Delayed neutron precursor primal scalar variable
Data type: String

Default value: <required>

Syntax: PKE/DNP_variable

Note: A primal scalar variable with order of n_delayed_groups will be added by Rattlesnake with this name for
the DNP concentrations ¢;,i = 1,---, 1.
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5.1.4 DNP fraction_aux

Description: Auxiliary variable for the delayed neutron precursor fractions
Data type: String

Default value: <required>

Syntax: PKE/DNP_fraction_aux

Note: An auxiliary scalar variable with order of n_delayed_groups will be added by Rattlesnake with this name
for the DNP fractions §;,i =1, -+, L.

5.1.5 DNP _decay_constant_aux

Description: Auxiliary variable for the delayed neutron precursor decay constants
Data type: String

Default value: <required>

Syntax: PKE/DNP_decay_constant_aux

Note: An auxiliary scalar variable with order of n_delayed_groups will be added by Rattlesnake with this name
for the DNP decay constants A;,i =1,---, I.

5.1.6 generation_time_aux

Description: Auxiliary variable for the neutron generation time
Data type: String

Default value: <required>

Syntax: PKE/generation_time_aux

Note: An first-order auxiliary scalar variable will be added by Rattlesnake with this name for the generation
time A.

5.1.7 reactivity_aux

Description: Auxiliary variable for the reactivity
Data type: String

Default value: <required>

Syntax: PKE/reactivity_aux

Note: An first-order auxiliary scalar variable will be added by Rattlesnake with this name for the reactivity p.

5.1.8 has_initial_equilibrium

Description: Whether or not DNP concentrations have the equilibrium on initial
Data type: Logical

Default value: True
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Syntax: PKE/has_initial_equilibrium

Note: If this parameter is true, the equilibrium initial condition for DNP concentrations, Eq. (35) will added by
Rattlesnake. Thus, no initial conditions for DNP concentrations will be needed from users.

5.1.9 pke_parameter_csv

Description: The CSV file containing dumped PKE parameters used for setting up PKE
Data type: String

Default value: <empty>

Syntax: PKE/pke_parameter_csv

Note: If this parameter is provided, the CSV file will be used to set up functions for PKE parameters p, A, 8
and A. These functions are then used by Rattlesnake for adding the initial conditions and auxiliary kernels for
those variables. Thus, no initial conditions and auxiliary kernels for these PKE parameters will be needed from
users.

5.1.10 verbose

Description: Whether or not to show what objects are added by the action
Data type: Logical
Default value: False

Syntax: PKE/verbose

5.2 MultiRegion

There could be multiple regions in one transport system that are loosely coupled, for example the coupled
reactor system. This input block makes Rattlesnake evaluate the coupled parameters including the generation
time, reactivity, and so on for these multiple regions. Rattlesnake uses MultiApp/Iransfer system to accomplish
the calculations and outputs the parameters on screen at the end. Detailed explanation on these parameters can
be found in Rattlesnake theory manual.

5.2.1 transport_system

Description: Name of the transport system which contains multiple reactor regions
Data type: String

Default value: <required>

Syntax: MultiRegion/transport_system

Note: Currently multi-region calculation does not support multi-scale.
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5.2.2 regions

Description: Multiple space separated regions of comma separated subdomain names for the transport system
Data type: Vector of strings

Default value: <required>

Syntax: MultiRegion/regions

Note: The number of elements in this parameter separated by spaces is the number of coupled regions. Subdo-
mains in this parameter must be a subset of the domain where the transport system is defined.

5.2.3 adjoint_multiapp_file

Description: MultiApp input file name for the adjoint problem
Data type: String
Default value: <required>

Syntax: MultiRegion/adjoint_multiapp_file

5.2.4 forward_partial_multiapp_files

Description: MultiApp input file names for all the partial forward problems each for a region.
Data type: Vector of strings

Default value: <required>

Syntax: MultiRegion/forward_partial multiapp_files

Note: Names need to be in a certain order as the on for adjoint_partial_multiapp_files. The number of names need
to be equal to the number of regions.

5.2.5 adjoint_partial_multiapp_files

Description: MultiApp input file names for all the partial adjoint problems each for a region.
Data type: Vector of strings

Default value: <required>

Syntax: MultiRegion/adjoint_partial multiapp_files

Note: Names need to be in a certain order as the on for forward_partial_multiapp_files. The number of names need
to be equal to the number of regions.

5.2.6 print_raw_pps

Description: True to print postprocessor values used for evaluating parameters
Data type: Logical
Default value: False

Syntax: MultiRegion/print_raw_pps
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5.2.7 csv_ file

Description: Output evaluated parameters in the CSV file if provided
Data type: String
Default value: <empty>

Syntax: MultiRegion/csv_file
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6 Mesh

Mesh can be either generated from the mesh generators or loaded from a mesh file. The type of mesh generator
or reader is specified by fype. There are some parameters shared by all mesh generators, which are listed in this
section. Parameters for individual mesh generators or readers are given in the subsections.

6.1 Common mesh parameters

6.1.1 type

Description: The type of mesh generator or reader

Data type: String

Default value: <required>

Syntax: Mesh/type

Note: Currently GeneratedBIDMesh, FileMesh, TiledMesh and ImageMesh are supported.

6.1.2 second_order

Description: Converts a first order mesh to a second order mesh
Data type: Logical

Default value: false

Syntax: Mesh/second_order

Note: When the simulation is using second order shape functions with CFEM (continuous finite element
method), the mesh must be in the second order. This parameter need to be turned to true to use a first-order
mesh for such a simulation.

6.1.3 uniform_refine

Description: Specify the level of uniform refinement applied to the initial mesh
Data type: Integer

Default value: 0

Syntax: Mesh/uniform _refine

Note: 0 means no uniform refinement. One level of uniform refinement generally increase the number of
element by factor 2, 4 and 8 in 1D, 2D and 3D respectively.

184



6.1.4 construct_side_list_from_node_list

Description: Whether construct side lists from the nodesets in the mesh (i.e. if every node on a give side is in a
nodeset then add that side to a sideset)

Data type: Logical
Default value: false

Syntax: Mesh/construct_side_list_from_node_list

6.1.5 skip_partitioning

Description: If true the mesh won’t be partitioned
Data type: Logical

Default value: false

Syntax: Mesh/skip_partitioning

Note: This may cause large load imbalanced but is currently required if you have a simulation containing
uniform refinement, adaptivity and stateful material properties.

6.1.6 block_id

Description: IDs of the block id /name pairs
Data type: Vector of integers

Default value: <empty>

Syntax: Mesh/block_id

6.1.7 block_name

Description: Names of the block id /name pairs
Data type: Vector of strings

Default value: <empty>

Syntax: Mesh/block_ name

Note: This parameter must correspond with block_id. The assigned block names can be used throughout the
input file. They will also be written to Exodus/XDA /XDR files.

6.1.8 boundary_id

Description: IDs of the boundary id /name pairs
Data type: Vector of integers
Default value: <empty>

Syntax: Mesh/boundary_id
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6.2 GeneratedBIDMesh

This mesh generator generates a regular mesh with uniformly distributed elements. This mesh generator is the
same as MOOSE GeneratedMesh except that it provides a parameter subdomain to let user assign the block IDs
of all generated elements.

6.2.1 dim

Description: The dimension of the mesh to be generated
Data type: Enumeration (/1/2/3/)
Default value: <required>

Syntax: Mesh/dim

6.2.2 nx

Description: Number of elements in the X direction
Data type: Integer
Default value: 1

Syntax: Mesh/nx

6.2.3 xmin

Description: Lower X Coordinate of the generated mesh
Data type: Real
Default value: 0

Syntax: Mesh/xmin

6.24 xmax

Description: Upper X Coordinate of the generated mesh
Data type: Real
Default value: 1

Syntax: Mesh/xmax
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6.2.5 ny

Description: Number of elements in the Y direction
Data type: Integer

Default value: 1

Syntax: Mesh/ny

Note: This parameter will be ignored when dim is 1.

6.2.6 ymin

Description: Lower Y Coordinate of the generated mesh
Data type: Real

Default value: 0

Syntax: Mesh/ymin

Note: This parameter will be ignored when dim is 1.

6.2.7 ymax

Description: Upper Y Coordinate of the generated mesh
Data type: Real

Default value: 1

Syntax: Mesh/ymax

Note: This parameter will be ignored when dim is 1.

6.2.8 nz

Description: Number of elements in the Z direction
Data type: Integer

Default value: 1

Syntax: Mesh/nz

Note: This parameter will be ignored when dim is 1 or 2.

6.2.9 zmin

Description: Lower Z Coordinate of the generated mesh
Data type: Real

Default value: 0

Syntax: Mesh/zmin

Note: This parameter will be ignored when dim is 1 or 2.
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6.2.10 zmax

Description: Upper Z Coordinate of the generated mesh
Data type: Real

Default value: 1

Syntax: Mesh/zmax

Note: This parameter will be ignored when din is 1 or 2.

6.2.11 elem_type

Description: The type of element from libMesh to generate

Data type: Enumeration (/EDGE EDGE2 EDGE3 EDGE4 QUAD QUAD4 QUADS QUADY TRI3 TRI6 HEX
HEX8 HEX20 HEX27 TET4 TET10 PRISM6 PRISM15 PRISM18 PYRAMID5 PYRAMID13 PYRAMID14/)

Default value: EDGE2/QUAD4/HEX8
Syntax: Mesh/elem_type

Note: The default value varies with dimension dim. It is EDGE2, QUAD4 and HEXS8 for 1D, 2D and 3D mesh
respectively. It is noted that EDGE, EDGE2, EDGE3 and EDGE4 are the supported 1D element types; QUAD,
QUAD4, QUADS, QUAD?Y, TRI3 and TRI6 are the supported 2D element types; HEX, HEX8, HEX20, HEX27,
TET4, TET10, PRISM6, PRISM15, PRISM18, PYRAMIDS5, PYRAMID13 and PYRAMID14 are the supported 3D
element types.

6.2.12 distribution

Description: Whether or not to distribute the mesh among processors
Data type: Enumeration (/PARALLEL/SERIAL/DEFAULT/)
Default value: DEFAULT

Syntax: Mesh/distribution

Note: PARALLEL means always distributing the mesh by using libMesh::ParallelMesh; SERIAL means always
not distributing the mesh by using libMesh::SerialMesh; DEFAULT means using libMesh::SerialMesh unless
'—parallel-mesh’ is specified on the command line. PARALLEL is recommended when the mesh contains more
than 1 million elements.

6.2.13 partitioner

Description: Specifies a mesh partitioner to use when splitting the mesh for a parallel computation
Data type: Enumeration (/default/metis/parmetis/linear/centroid /hilbert_sfc/morton_sfc/)
Default value: default

Syntax: Mesh/partitioner
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6.2.14 centroid_partitioner_direction

Description: Specifies the sort direction if using the centroid partitioner
Data type: Enumeration (/x/y/z/radial/)
Default value: <empty>

Syntax: Mesh/centroid_partitioner_direction

6.2.15 subdomain

Description: Block IDs of elements
Data type: Vector of integers
Default value: <empty>

Syntax: Mesh/subdomain

Note: If this parameter is empty, block IDs of all elements are assigned to 0. If this parameter is provided,
the size of this parameter must agree with the number of generated elements. The number of elements in
1D is equal to nx. The number of elements in 2D is equal to nx xny with elem_type being QUAD, QUAD4,
QUADS or QUAD?9 and is equal to 2nx x ny with elem_type being TRI3 or TRI6. The number of elements in 3D is
equal to nxxny xnz with elem_type being HEX, HEX8, HEX20 or HEX27 and is equal to 6nx xny with elem_type
being TET4 or TET10, and is equal to 3nxxny with elem_type being PRISM6, PRISM15, PRISM18, PYRAMIDS,
PYRAMID13 or PYRAMID14.

6.3 CartesianMesh

This mesh generator generates a regular Cartesian mesh. Elements do not have to be uniformly distributed
in the generated mesh. The element type will be EDGE2, QUAD4 and HEX8 when dim is equal to 1, 2 and 3
respectively.

6.3.1 dim

Description: The dimension of the mesh to be generated
Data type: Enumeration (/1/2/3/)
Default value: <required>

Syntax: Mesh/dim

6.3.2 dx

Description: Intervals in the X direction
Data type: Vector of reals

Default value: <required>

Syntax: Mesh/dx
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6.3.3 ix

Description: Number of grids in all intervals in the X direction (default to all one)
Data type: Vector of integers

Default value: <empty>

Syntax: Mesh/ix

Note: This size of this parameter must be equal to the size of dx.

6.34 dy

Description: Intervals in the Y direction

Data type: Vector of reals

Default value: <empty>

Syntax: Mesh/dy

Note: This parameter is required for 2D and 3D. It will be ignored for 1D.

6.3.5 iy

Description: Number of grids in all intervals in the Y direction (default to all one)
Data type: Vector of integers

Default value: <empty>

Syntax: Mesh/iy

Note: This size of this parameter must be equal to the size of dy. It will be ignored for 1D.

6.3.6 dz

Description: Intervals in the Z direction
Data type: Vector of reals

Default value: <empty>

Syntax: Mesh/dz

Note: This parameter is required for 3D. It will be ignored for 1D and 2D.

6.3.7 iz

Description: Number of grids in all intervals in the Z direction (default to all one)
Data type: Vector of integers

Default value: <empty>

Syntax: Mesh/iz

Note: This size of this parameter must be equal to the size of dz. It will be ignored for 1D and 2D.
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6.3.8 subdomain_id

Description: Block IDs (default to all zero)
Data type: Vector of integers

Default value: <empty>

Syntax: Mesh/subdomain_id

Note: when both dy and dz is provided, the size of this parameter must be equal to nx x ny x nz, where nx, ny
and nz are the sizes of dx, dy and dz respectively. Otherwise, it must be equal to nx x ny when dy is provided,
or nx when dy is not provided.

6.3.9 distribution

Refer to distribution in GeneratedBIDMesh.

6.3.10 partitioner

Refer to partitioner in GeneratedBIDMesh.

6.3.11 centroid_partitioner_direction

Refer to centroid_partitioner_direction in Generated BIDMesh.

6.4 Hexagonal meshes

(to be added.)

6.5 FileMesh

This will load a mesh file. The mesh file has to be pre-generated. For complicated geometries, we generally use
CUBIT from Sandia National Laboratories. CUBIT can be licensed from CSimSoft for a fee depending on the
type of organization you work for. Other mesh generators can work as long as they output a file format that
libMesh reads. Currently the supported mesh format are listed in Table 21 by libMesh.
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Table 21 Supported mesh format.

File extension Mesh format
*e Sandia’s ExoduslI format
*.exd Sandia’s Exodusll format
*.gmv LANL’s General Mesh Viewer format
*.mat Matlab triangular ASCII file
*n Sandia’s Nemesis format
*nem Sandia’s Nemesis format
* off OOGL OFF surface format
*ucd AVS’s ASCII UCD format
*unv I-deas Universal format
*vtu Paraview VTK format
*.inp Abaqus .inp format
*xda libMesh ASCII format
*xdr libMesh binary format
*gz any above format gzipped
*bz2 any above format bzip2’ed
* Xz any above format xzipped
*.cpa libMesh Checkpoint ASCII format
*.cpr libMesh Checkpoint binary format

6.5.1 distribution

Refer to distribution in GeneratedBIDMesh.

6.5.2 partitioner

Refer to partitioner in Generated BIDMesh.

6.5.3 centroid_partitioner_direction

Refer to centroid_partitioner_direction in Generated BIDMesh.

6.5.4 file

Description: The name of the mesh file to read
Data type: String

Default value: <required>

Syntax: Mesh/file

6.6 TiledMesh
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6.7 ImageMesh

6.8 INSTANT mesh generators

This will invoke INSTANT to generate a mesh and write it into an Exodus file.

6.9 Mesh modifiers

Mesh modifiers further modify the mesh after it has been created. Possible modifications include: adding node
sets and/or side sets, translating, rotating, and scaling the mesh points, assigning block IDs for elements, and
etc.

6.9.1 MOOSE mesh modifiers

AddAlISideSetsByNormals

SideSetsAroundSubdomain

AddExtraNodeset

AddSideSetsBase |

SideSetsFromNormals

SideSetsFromPoints

| AssignElementSubdomainID |

| OrientedSubdomainBoundingBox |

BlockDeleter

MeshModifier

Figure 18 Moose mesh modifiers.
The complete list of MOOSE mesh modifiers can be found in Fig. 18. Their parameters are fairly strait-forward

and can be found in MOOSE documents. We found the mesh extruder is frequently used so we also document
it here.
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6.9.2 MeshExtruder

This modifier takes a 1D or 2D mesh and extrudes it to 2D or 3D, respectively. Triangles are extruded to prisms
(wedges). Quadrilaterals are extruded to hexahedra. The extruded mesh contains N X L elements, where N is
the number of elements in the original mesh and L is the number of layers to be extruded. Newly-created top
and bottom sidesets can be named by the user. Their numbers of sides are equal to N. Sidesets are extruded
and preserved. Their number of sides is L times of their original number of sides.

6.9.2.1 depends_on

Description: The MeshModifiers that this modifier relies upon (i.e. must execute before this one)
Data type: Vector of strings

Default value: <empty>

Syntax: MeshModifiers/*/depends_on

Note: This parameter is useful when there are multiple mesh modifiers and the sequence of their runs are
significant.

6.9.2.2 num_layers

Description: The number of layers in the extruded mesh (L)
Data type: Integer
Default value: <required>

Syntax: MeshModifiers/*/num_layers

6.9.2.3 extrusion_vector

Description: The direction and length of the extrusion
Data type: Vector of reals

Default value: <required>

Syntax: MeshModifiers/*/extrusion_vector

Note: The dimension of this parameter is 2 or 3 for 1D or 2D mesh respectively. The L2 norm of this parameter
indicates how far the mesh is going to be extruded. All layers are distributed evenly at this moment.

6.9.2.4 bottom_sideset

Description: The boundary that will be applied to the bottom of the extruded mesh
Data type: String
Default value: <empty>

Syntax: MeshModifiers/*/bottom_sideset
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6.9.2.5 top_sideset

Description: The boundary that will be applied to the top of the extruded mesh
Data type: String
Default value: <empty>

Syntax: MeshModifiers/*/top_sideset

6.9.2.6 existing_subdomains

Description: The subdomains that will be remapped for specific layers
Data type: Vector of integers
Default value: <empty>

Syntax: MeshModifiers/*/existing_subdomains

6.9.2.7 layers

Description: The layers where the existing_subdomain will be remapped to new ids
Data type: Vector of integers

Default value: <empty>

Syntax: MeshModifiers/*/layers

Note: The layer ID starts from 0.

6.9.2.8 new_ids

Description: The list of new ids
Data type: Vector of integers
Default value: <empty>

Syntax: MeshModifiers/*/new_ids

Note: This list should be either length existing_subdomains or existing_subdomains x layers. In the former case, the
new IDs will be assigned to all layers specified by layers. In the second case, the new IDs will be assigned to all
layers individually according the ordering in layers.

6.9.3 RandomNodeDisplacement

This mesh modifier moves the nodes in the mesh randomly. The modifier will try to find the minimum dis-
tance h; to any nodes for every node i. Then it generates one random number r from -1 to 1 in 1D and uses the
number to obtain the new coordinate with x; + rch;, where c is a given fraction, for each node. Or it generates
two random numbers r1 and 1, from 0 to 1 in 2D and sets the new coordinate with (x; + rich; cos(r27), y; +
rich;sin(rp27)), for each node. Or it generates two random numbers r; and r, from 0 to 1 and another

random number r3 from -1 to 1 in 3D and sets the new coordinate with (x; + rich; cos(r227) /1 — r%,yl- +

rich;sin(r27) 4 /1 — r%,zi + rich;rs), for each node. Users can easily create an irregular mesh with a regular
mesh generator and this mesh modifier.
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6.9.3.1 depends_on

Refer to depends_on in MeshExtruder.

6.9.3.2 max_perturb

Description: Maximum fractional displacement of mesh nodes
Data type: Real

Default value: 0

Syntax: MeshModifiers/*/max_perturb

Note: This parameter is the fraction number c.

6.9.3.3 perturb_boundary

Description: Whether the boundary nodes are displaced
Data type: Logical
Default value: false

Syntax: MeshModifiers/*/perturb_boundary

6.9.3.4 seed

Description: Random seed for initializing random number sequence
Data type: Integer
Default value: 1

Syntax: MeshModifiers/*/seed

6.9.4 SplitConformingMeshForMortar

This mesh modifier basically splits a conforming mesh, i.e. a mesh without hanging nodes, for calculations with
mortar FEM. This modifier will create blocks for mortar faces among subdomains with the naming convention
"interface-#1-to-#2’, where #1 is the number of the from subdomain ID and #2 is the number of the to subdomain
ID. It is noted that subdomain here is different from libMesh subdomain, which is indeed just block. It will
also disconnect all subdomains by duplicating interface nodes and reset the connectivity of all elements on
subdomain interfaces to these nodes. It will also split existing side sets with respect to all subdomains into
three parts with naming "#ss_name-#1-boundary’, "#ss_name-#1-interior’ and "#ss_name-#1-outside’, where #ss_name
is the name of the side set (if the name is missing, it will be the side set ID), #1 is the subdomain ID. It will also
create new side sets between subdomains with naming “interface-#1-to-#2’, where #1 is the number of the from
subdomain ID and #2 is the number of the to subdomain ID. This modifier will be automatically added when
is_mesh_split is true and multiscale calculation, i.e. multiple transport systems, is pursued.

6.9.4.1 depends_on

Refer to depends_on in MeshExtruder.
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6.9.4.2 num_subdomains

Description: Number of subdomains for mortar FEM
Data type: Integer
Default value: <required>

Syntax: MeshModifiers/*/num_subdomains

6.9.4.3 subdomain_blocks

Description: Multiple space separated groups of comma separated block names.
Data type: Vector of strings

Default value: <required>

Syntax: MeshModifiers/*/subdomain_blocks

Note: Number of elements of this parameter must be equal to num_subdomains. Elements of this parameter are
the comma separated block name. An example of this parameter could be 1,2 3,4, where block 1 and 2 will
form the first subdomain and block 3 and 4 will form the second subdomain.

6.9.4.4 subdomain_names

Description: Subdomain names

Data type: Vector of strings

Default value: <empty>

Syntax: MeshModifiers/*/subdomain_names

Note: Users can optionally assign subdomain names with this parameter. If this parameter is given, the size of
this parameter must be equal to num_subdomains.

6.9.5 SplitSideSetsAndAddNormals

This mesh modifier is useful to LS-CFEM-SN for imposing the surface source boundary condition strongly. (to
be added)
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7 Functions

7.1 MOOSE Functions

A MOOSE function is a function in space and in time. It can be as simple as an expression or as complicated as
a solution function defined on an unstructure mesh.

7.1.1 MOOSE Functions in MOOSE Framework

Function
MooseParsedVectorFunction
PiecewiseBilinear

TestSetupPostprocessorData
ActionFunction

PiecewiseConstant

PiecewiseLinear

Figure 19 Moose functions.
The complete list of MOOSE functions in MOOSE can be found in Fig. 19. Their parameters can be found

in MOOSE documents. Because the functionalities of these functions and their parameters are fairly strait-
forward, we will not replicate them here.

7.1.2 SlopeFunction

This function is a simpler version of PiecewiseLinear in that it only provides a function in time with the abscissa
and ordinate data directly from the input. It is illustrated in Fig. 20.
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Figure 20 Piece-wise linear function by SlopeFunction.

7.1.21 timep

Description: The time points
Data type: Vector of reals
Default value: <required>

Syntax: Functions/*/timep

7.1.2.2 value

Description: The function values at all time points
Data type: Vector of reals

Default value: <required>

Syntax: Functions/*/value

Note: The size of this parameter must be equal to the size of timep.

7.1.3 StepFunction

This function is a simpler version of PiecewiseConstant in that it only provides a function in time with the abscissa
and ordinate data directly from the input. It is illustrated in Fig. 21.

V2 V2 !
Vi V3 Vi V3
V4 V4
Vo Vo
t t
to ta t2 ts to ta t2 ts
(a) left continuous (b) right continuous

Figure 21 Piece-wise constant function by StepFunction.
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7.1.3.1 timep

Description: The time points where steps happen
Data type: Vector of reals
Default value: <required>

Syntax: Functions/*/timep

7.1.3.2 wvalue

Description: The constant values of all time steps
Data type: Vector of reals
Default value: <required>

Syntax: Functions/*/value

7.1.3.3 direction

Description: Direction to look to find value
Data type: Enumeration (/left/right/)
Default value: left

Syntax: Functions/*/direction

Note: Direction left means the function is left continuous i.e. limp;_,o+ f(t — At) = f(t).

7.2 Transport Solution Functions

Transport solution functions are special MOOSE functions. They provide the multigroup radiation transport
solutions in energy groups, space, time and angle. They can be used to specify the volumetric or boundary
external sources. They can be added with the Functions input block. Rattlesnake has several built-in transport
solution functions that users can directly use.

7.2.1 ConstantSourceFunction

This function specifies a function which is constant in space, time, angle and in every individual energy groups.
The function could have different value in different energy groups.
o = 0
fg(”/Q/ t) - ﬁr (36)

where v, is the scalar value of energy group g; ¢4 is the dimension-dependent normalization:

2, 1D
cg=1{ 2m, 2D . (37)
47, 3D

This function can be typically constructed and used inline with the syntax v, vy, - -, vg.
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7.2.1.1 Dimension

Description: Dimension

Data type: Integer

Default value: <required>
Syntax: Functions/*/Dimension

Note: This parameter must be the same as the mesh dimension.

7212 NG

Description: Number of energy groups
Data type: Integer
Default value: <required>

Syntax: Functions/*/NG

7.2.1.3 value

Description: Group-dependent strengths
Data type: Vector of reals

Default value: <required>

Syntax: Functions/*/value

Note: The size of this parameter must be equal to NG.

7.2.2 PulsedSourceFunction

This function specifies a isotropic function pulsed in space at a given location 7 and in time at the first time
step. It allows varying pulse strength in energy groups.

= 1 7o
fo(7, Q0 t) = o~ Uge 22 5(F— Al), (38)
d

where v, is the strength of energy group g; c, is the dimension-dependent normalization; c is the standard
derivation of the Gaussian distribution.

7.2.2.1 Dimension

Refer to Dimension in ConstantSourceFunction.

7222 NG

Refer to NG in ConstantSourceFunction.
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7.2.2.3 wvalue

Refer to value in ConstantSourceFunction.

7.2.2.4 center

Description: Position of the center of the Gaussian (same for each energy group)
Data type: Vector of reals

Default value: <required>

Syntax: Functions/*/center

Note: The size of this parameter must be equal to the mesh dimension.

7.2.2.5 constant

Description: The standard deviation of the gaussian
Data type: Real

Default value: 1

Syntax: Functions/*/constant

7.2.3 DirectionalSourceFunction

This function specifies a delta function in angle specifically in a direction in a given angular quadrature, con-
stant in space and time with varying strength in energy groups.

fo(F, Q1) = 08(Q — Qp), (39)

where v, is the strength of energy group ¢ and Q) is a direction with index m of a given angular quadrature.

7.2.3.1 Dimension

Refer to Dimension in ConstantSourceFunction.

7232 NG

Refer to NG in ConstantSourceFunction.

7.2.3.3 strength

Description: Strength of the source of all energy groups
Data type: Vector of reals

Default value: <required>

Syntax: Functions/*/strength

Note: The size of this parameter must be equal to NG.
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7.2.4 FilePNTransportSolutionFunction

This function turns a PN solution into a transport function.

IR P (1) g i (7, 1), 1D
fg(?r Q, t) = Zf:l\(]) Zin:O zé%lyl,m (Q)(Pg,l,m (7;/ t)/ 2D (40)
I T 2 () g 1 (7, 8), 3D

where PN is the PN order; P, are the Legendre polynomials; y is the cosine of the polar angle; Y} ,, are the real
normalized spherical harmonics; ¢; or ¢, ,, are the angular flux moments. The solution must have been loaded
from a file with a MOOSE SolutionUserObject.

7.2.4.1 Dimension

Refer to Dimension in ConstantSourceFunction.

7242 NG

Refer to NG in ConstantSourceFunction.

7.24.3 csphase

Description: Whether or not Condon-Shortley phase is included in the function
Data type: Logical

Default value: False

Syntax: Functions/*/csphase

Note: If the solution is generated by Rattlesnake, Condon-Shortley phase is not included for the evaluation of
angular flux moments, which is why the default value of this parameter is false.

7.2.4.4 solution

Description: The SolutionUserObject to extract data from
Data type: String

Default value: <required>

Syntax: Functions/*/solution

Note: The solution user object must load the angular flux moments in the certain order: m = low(1),- - - ,up(l);l =
0,---,PN;g=1,---,G, where low(l) is 0, 0 and —! and up(l) is 0, I and I for one-dimension, two-dimension
and three-dimension respectively and PN is the spherical harmonics order and G is the number of energy
groups.

7.24.5 scale_factor

Description: Scale factor (a) to be applied to the solution (x): ax + b
Data type: Real
Default value: 1

Syntax: Functions/*/scale_factor
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7.2.4.6 add_factor

Description: Add this value (b) to the solution (x): ax + b
Data type: Real
Default value: 0

Syntax: Functions/*/add_factor

7.2.5 Customized TransportSolutionFunction (Advanced)

To determine the right base class: PN, SN transport solution function;
To implement your function: Using Larsen_2D as an example;
To register your function in RattleSnakeApp;

To use your function as other transport functions;

S N N

To consider adding it into Rattlesnake officially.

7.3 Adjustable Function

AdjustableFunction is a MOOSE function, the same as MOOSE ConstantFunction except that

e Parameter 'value’ is renamed as ‘InitialParam’;

e It has two additional methods:

Real AdjustableFunction::getParameter();
void AdjustableFunction::setParameter(Real v);

AdjustableFunction is used by CriticalitySearch for finding the criticality parameter.

7.4 Phase Functions

The phase function p is the angular distribution of a particle scattered by a background medium. It is a function
of the scattering angle 6 or the cosine of the scattering angle ;1 = cos(#). It satisfies the normalization condition:

1 1
E/zﬂ /flp(#)dww =1 (41)

or

1 1
3 ./_1 plw)dp =1, (42)

More phase functions can be implemented. Phase functions can be added as the normal MOOSE functions.
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7.4.1 IsotropicPhaseFunction

This phase function is independent on y, i.e. p(u) = 1. This function has no parameters.

7.4.2 Rayleigh

This Rayleigh phase function is p(#) = 2(1 + p2). This function has no parameters.

7.4.3 HenyeyGreenstein

This Henyey-Greenstein phase function is p(u) = S;gzz It is Legendre expansion is p(yu) = Y5 1(2n +
1+g%=2gp)3

1)¢" Py (p). This function has one parameter g, which is in range of [—1,1]. When g > 0, forward scattering is

dominant, while for ¢ < 0, backward scattering predominates.

7431 g

Description: Henyey-Greenstein parameter ¢
Data type: String

Default value: 0

Syntax: Functions/*/g

Note: This parameter can be a name of a general function.
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8 Materials

8.1 type

Description: To specify the material type
Data type: string
Default value: <required>
Syntax: Materials/*/type
Note: The supported types include:
e ConstantNeutronicsMaterial: suitable for calculation with the fixed macroscopic cross sections, like in
benchmark problems where cross sections are given by the problem description.

e FunctionNeutronicsMaterial: suitable for calculation with the macroscopic cross sections being spatial
and time functions. It is typically used for MMS (method of manufactured solutions) or for transient
benchmark problems.

e MixedNeutronicsMaterial: suitable for checking cross sections in YAKXS format.

e CoupledFeedbackNeutronicsMaterial: suitable for multiphysics or depletion calculations where tabu-
lated cross sections are required.

e CRoddedNeutronicsMaterial: suitable for modeling control-rod movements with few different constant
neutronics materials.

e ConstantTRMaterial: suitable for calculation with the fixed macroscopic cross sections, like in benchmark
problems where cross sections are given by the problem description.

e FunctionTRMaterial: suitable for calculation with the macroscopic cross sections being spatial and time
functions. It is typically used for MMS (method of manufactured solutions) or for transient benchmark
problems.

Mixed types of materials can be used in one discretization scheme. All types of materials can be used for com-
mon particle transport. The material properties declared by materials not used by common particle transport
will be ignored. Only neutronics materials can be used for neutron transport. Only thermal radiation (TR)
materials can be used for thermal radiation transport.

8.2 Neutronics materials
Neutronics materials are special because they are interacting with TransportSystems in the following ways:

1. Neutronics materials cannot be defined across two discretization schemes even they are having exactly
the same scheme.

2. The coverage of neutronics material of the entire domain can be checked by setting check_neutronics_material_coverage
to true.

3. Neutronics materials cannot be used independently on discretization schemes
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8.2.1 Brief introduction to YAKXS

YAKXS is a general toolkit for managing the multigroup cross sections for neutron transport calculations. It
is developed under YAK, the MOOSE-based raidation transport module, so it is named as YAKXS. It provides
a XML cross section library format for storing the multigroup cross sections. YAKXS provides operations like
cross section interpolation, mixing, fitting, collapsing, and etc. Users and developers are shielded from the
complexity of these operations.

YAKXS contains ten c++ classes and one Utility sub-namespace:

10.
11.

. Utility sub-namespace collects a set of useful data structures and functions for cross section processing,

like converting a isotope name to its mat number, getting the default isotope class of an isotope, etc.

. MultigroupLibrary holds the raw data loaded from a library in YAKXS format. It comes along with ma-

nipulators, accessors and writers. MultigroupLibrary can be outputted into and be constructed from a data
file in the YAKXS XML or binary format.

. MixingTable regulates the raw data for the mixing operation. It holds the microscopic cross sections at a

particular state. MixingTable can be constructed from MultigroupLibrary through a selection or interpola-
tion operation.

. Mixture contains the macroscopic cross sections, which can be directly used by the transport solvers.

Mixture can be outputted into a data file in the INSTANT XML format. Mixture however is not constructed
from a data file in the INSTANT XML format.

. MixedMultigroupLibrary contains the macroscopic cross sections of all state points in MultigroupLibrary.

MixedMultigroupLibrary can be obtained from MultigroupLibrary through mixing or folding operations.
When folding operation is performed, new variables will be introduced and the atomic density depen-
dency on these new variables is folded into the generated library. MixedMultigroupLibrary can be out-
putted into and be constructed from a data file in the YAKXS XML or binary format.

. InputXS is one of the macroscopic cross section holders. InputXS provides to transport solvers constant

macroscopic cross sections. InputXS can be constructed from Mixture. InputXS can be outputted into
a data file in the INSTANT XML format and can be constructed from a data file in the INSTANT XML
format.

. PerturbedInputXS is one of the macroscopic cross section holders. PerturbedInputXS provides to transport

solvers a simple model for cross sections with various feedback effects. PerturbedlnputXS can be con-
structed from a RELAP-5 input file containing the cross sections data with all the perturbation coefficients
or from a MixedMultigroupLibrary through fitting.

. FunctionlnputXS is one of the macroscopic cross section holders. Every cross section can be a function

varying in space and time.

. YAKXSCreator is designed for cross section generators to create the multigroup library in YAKXS format.

TransmutationLibrary holds the raw data loaded from a transmutation library.

WorkingTransmutationLibrary contains the preprocessed data from TransmutationLibrary which can be used
for transmutation calculations directly. The number of isotopes in the WorkingTransmutationLibrary does
not have to be the full list of isotopes in the TransmutationLibrary, from which the working library are
generated.

All of them are included in YAKXS namespace. Cross section processing capabilities are built with the classes
and utility functions. The relations among these classes are illustrated into Fig. 22. Rattlesnake neutronics
material interact with YAKXS for loading the cross sections and evaluate the material properties required for
neutron transport calculations.
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Figure 22 Graphical view of YAKXS.
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8.2.2 Material properties declared by neutronics materials

All neutronics materials declare a set of material properties, which are listed in Table 22. This list could be useful
for advanced users who want to utilize those properties for postprocessing. Those properties are declared on
blocks on which the material are defined. The list of material properties can also be revealed during run-time
by setting show_material_props in the Debug block of the input file to true. It is noted that not all of them are
evaluated on element faces. Diffusion coefficients are evaluated on element faces for diffusion calculations
when scheme is equal to CFEM-Diffusion or DFEM-Diffusion. Total cross sections are evaluated on element
faces scheme is equal to SAAF-CFEM-PN, LS-CFEM-SN or LS-CFEM-PN. sigma_scattering_ n<1> and neutron

velocities are evaluated for SAAF-CFEM-PN and LS-CFEM-PN.

Table 22 Neutronics material properties.

Name Notation Type When is declared
nu_sigma_fission Vofe,8=1,G std::vector<Real>  Fissile”
nu_sigma_fission_g<g> V0o Real Fissile
kappa_sigma_fission KOfe, 8 =1, ,G std::vector<Real>  Fissile & Plus’
kappa_sigma_fission_g<g> KO o Real Fissile & Plus
sigma_fission 0re8=1-,G std::vector<Real> Fissile & Plus
sigma_fission_g<g> Ufg Real Fissile & Plus
fission_spectrum Xpg8§=1-+,G std::vector<Real> Fissile & Plus

beta_i<i> i Real Fissile & I > 0°
lambda_i<i> A Real Fissile & I > 0
chi_delay_i<i> Xgir8=1-,G std::vector<Real>  Fissile & Plus
neutron_speed_g<g> (2 Real Transient”
diffusion_coefficient_g<g> Dg Real Diffusion®
vector_diffusion_coefficient g<g> Dy RealVector Diffusion
tensor_diffusion_coefficient g<g> D, RealTensor Diffusion
sigma_removal_g<g> Org Real Diffusion
sigma_total_g<g> Ot,g Real NotDiffusionf
sigma_absorption_g<g> Ua,q Real Plus
sigma_nalpha_g<g> Oug Real Provided$
sigma_capture_g<g> Ocg Real Provided

chig<g> Xg Real Fissile & FissionPattern”
chi_delay_g<g> Xgisi=1,-+,1 std::vector<Real> Fissile & FissionPattern
sigma_scattering_g<p>_g<g> azl_}g J=0,---,L std:vector<Real>  ScatteringPattern’
sigma_scattering n<I> (75 73’ ,0,8=1---,G CSR<Real> NonzeroScattering/

? Fissile means that the material is fissile;
b Plus means that plus is set to true;

¢ I > 0 means that n_delay_groups is greater than 0; Note that the material has to be fissile to provide delayed neutron data;
4 Transient means that equation_type is equal to transient;

¢ Diffusion means that scheme is equal to CFEM-Diffusion or DFEM-Diffusion;

f NotDiffusion means that scheme is equal to any other than CFEM-Diffusion and DFEM-Diffusion;
8 Provided means that the cross section data is provided by the input;
I FissionPattern means that the property will be declared for the group with non-zero fission neutron yields;
I ScatteringPattern means that the property will be declared for the non-zero scattering entries;

/ NonzeroScattering means that there is scattering for this material.
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8.2.3 ConstantNeutronicsMaterial

This material uses InputXS in YAKXS for managing the constant macroscopic cross sections. This material
provides the basic capability of doing multigroup transport calculations.

8.2.3.1 block

Description: List of blocks where the material is defined on
Data type: Vector of strings
Default value: <required>
Syntax: Materials/*/block

Note: The blocks in the list must be a subset of a particular discretization scheme. We will later refer this
discretization scheme as the discretization scheme.

8.2.3.2 isMeter

Description: Whether or not mesh is in unit of meter
Data type: Logical
Default value: False

Syntax: Materials/*/isMeter

8.2.3.3 plus

Description: To indicate if absorption, fission and kappa fission are to be evaluated
Data type: Logical
Default value: False

Syntax: Materials/*/plus

8.2.3.4 AdjusterlUO

Description: User data object that performs the adjustment factor calculation on subdomain-base
Data type: string

Default value: <empty>

Syntax: Materials/*/ AdjusterUO
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8.2.3.5 dumpMatAt

Description: Dump materials on QPs for a particular residual evaluation
Data type: integer

Default value: Maximum unsigned integer

Syntax: Materials/*/dumpMatAt

Note: This parameter should only be used for debugging purpose. When this parameter is true, the cross
sections will be dumped into a file named as <output>-p<x>-t<y>.xml, where output is the string given in
output, x is the processor ID and y is the thread ID. If multiple processors or threads are used, multiple files
will be generated.

8.2.3.6 dumpMatOnElem

Description: Dump materials on a list of elements for the residual evaluation specified in dumpMatAt; all will
be dumped if empty

Data type: Vector of integers

Default value: <empty>

Syntax: Materials/*/dumpMatOnElem

8.2.3.7 output

Description: The file base used to dump debug information
Data type: String
Default value: ‘'mat’

Syntax: Materials/*/output

8.2.3.8 dbgmat

Description: To turn on the debug info of reading the file
Data type: Logical
Default value: false

Syntax: Materials/*/dbgmat

8.2.3.9 disable_fission

Description: To discard fission even it exists
Data type: Logical

Default value: False

Syntax: Materials/*/disable_fission

Note: This parameter provide a way to disable fission in neutronics materials, which is useful in some circum-
stances like evaluating the partial solutions from the fission event in a part of the solution domain.
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8.2.3.10 fromFile

Description: To indicate the material will be read from a file
Data type: Logical

Default value: false

Syntax: Materials/*/fromFile

Note: If this parameter is false, the following parameters are activated: sigma_t, sigma_s, nu_sigma_f, sigma_capture,
sigma_nalpha, chi, neutron_speed, decay_constant, delay_fraction, delay_spectrum, diffusion_coef , sigma_r, sigma_f, kappa_sigma._f,
L and fissile. And fileName is deactivated. It is opposite when this parameter is true.

8.2.3.11 material_id

Description: ID of the material
Data type: integer

Default value: 1

Syntax: Materials/*/material_id

Note: This parameter is used for loading the correct material in the material file in INSTANT XML format when
fromFile is true. It is used for dumping the material into a INSTANT XML file when fromFile is false and dbgmat
is true.

8.2.3.12 fileName

Description: The INSTANT XML XS file name
Data type: string

Default value: <empty>

Syntax: Materials/*/fileName

Note: This parameter must be provided when fromFile is true. Refer to [1] for the INSTANT XML format. The
number of groups in the file must be equal to G. If the material is fissile and have non-zero number of delayed
neutron groups, the number must agree with n_delay_groups. If equation_type is transient, neutron speeds must
be provided in the file.

8.2.3.13 sigma-t

Description: Constant total cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sigma_t

Note: This parameter must be provided and will be in action when the following conditions are met:

o fromFile is false;

e and Discretization Schemes of the subdomains where this material is defined on is not CFEM-Diffusion
without transport_wrapper;
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e and Discretization Schemes of the subdomains where this material is defined on is not DFEM-Diffusion
without transport_multiapp_file.

The size of this parameter must be equal to the number of coarse groups of the discretization scheme from G
and group_collapsing. diffusion_coef and sigma_r will be ignored when this parameter is in action.

8.2.3.14 diffusion_coef

Description: Constant diffusion coefficients
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/diffusion_coef

Note: This parameter must be provided when the following conditions are met:

o fromFile is false;
e and Discretization Schemes of the subdomains where this material is defined on is CFEM-Diffusion with-

out fransport_wrapper, or DFEM-Diffusion without transport_multiapp_file.

The size of this parameter must be equal to the number of coarse groups of the discretization scheme from G
and group_collapsing. sigma_t will be ignored when this parameter is in action.

8.2.3.15 sigma.r

Description: Constant removal cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sigma_r

Note: This parameter must be either provided or not provided along with diffusion_coef.

8.2.3.16 L

Description: Order of scattering anisotropy
Data type: Integer

Default value: 0

Syntax: Materials/*/L

Note: This parameter is activated when fromFile is false. If this parameter is higher than NA in the discretization
scheme (0 if the discretization scheme does not have), the higher order scattering will be ignored. To be a little
more specific, higher order scattering than 0 will be ignored for diffusion schemes, CFEM-Diffusion and DFEM-
Diffusion.
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8.2.3.17 sigma_s

Description: Constant scattering cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sigma_s

Note: This parameter must be provided when fromFile is false. The size of this parameter must be equal to
/

G2x(L+1). Values are ordered as {Uflﬁg, ¢g=1---,Gg=1,---,Gl1=0,--- ,L}. In-group scatterings are

ignored for diffusion schemes including CFEM-Diffusion and DFEM-Diffusion.

8.2.3.18 fissile

Description: To indicate if the material is fissile
Data type: Logical

Default value: False

Syntax: Materials/*/fissile

Note: This parameter is activated when fromFile is false.

8.2.3.19 nu_sigma_f

Description: Constant nu fission cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/nu_sigma_f

Note: This parameter must be provided when fromFile is false and fissile is true. The size of this parameter must
be equal to G.

8.2.3.20 chi

Description: Fission spectrum
Data type: Vector of reals
Default value: <empty>
Syntax: Materials/*/chi

Note: This parameter must be provided when fromFile is false and fissile is true. The size of this parameter
must be equal to G. This parameter needs to contain the averaged fission spectrum of the prompt and delayed
spectrum when n_delay_groups is non-zero. Otherwise, it contains the prompt spectrum. This convention is
adapted by YAKXS.
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8.2.3.21 mneutron_speed

Description: Neutron speed

Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/neutron_speed

Note: This parameter must be provided when fromFile is false and equation_type is transient. The size of this
parameter must be equal to G. This parameter is ignored when equation_type is not transient.

8.2.3.22 decay_constant

Description: Decay constants of delayed neutron precursors
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/decay_constant

Note: This parameter must be provided when fromFile is false, fissile is true and 1 _delay_groups is non-zero. This
parameter does not affect the calculation when equation_type is not transient.

8.2.3.23 delay_fraction

Description: Delayed neutron fractions
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/delay_fraction

Note: This parameter must be provided when fromFile is false, fissile is true and n_delay_groups is non-zero. The
size of this parameter must be equal to 1_delay_groups. This parameter is used for generating weighted fission
spectrum and affects the calculation in turn when equation_type is not transient.

8.2.3.24 delay_spectrum

Description: Neutron spectrum of all delayed groups
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/delay_spectrum

Note: This parameter must be provided when fromFile is false, fissile is true and n_delay_groups is non-zero. The
size of this parameter must be equal to n_delay_groups x G. Values are ordered as {Xd,g,ir g=1---,Gi=1,---, I}.

This parameter is used for generating weighted fission spectrum and affects the calculation in turn when equa-
tion_type is not transient.
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8.2.3.25 sigma_capture

Description: Constant Capture cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sigma_capture

Note: This parameter is optional when fromFile is false. When it is provided, its size must be equal to G.

8.2.3.26 sigma_nalpha

Description: Constant Nalpha cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sigma_nalpha

Note: This parameter is optional when fromFile is false. When it is provided, its size must be equal to G.

8.2.3.27 sigma_f

Description: Constant fission cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sigma_f

Note: This parameter is optional when fromFile is false. When it is provided, its size must be equal to G.

8.2.3.28 kappa_sigma_f

Description: Constant kappa fission cross section
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/kappa_sigma_f

Note: This parameter is optional when fromFile is false. When it is provided, its size must be equal to G.

8.2.4 FunctionNeutronicsMaterial

This material uses FunctionlnputXS in YAKXS for managing the constant macroscopic cross sections. It differs
with ConstantNeutronicsMaterial only with the followings:
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1. isMeter must be false in FunctionNeutronicsMaterial.
it does not have sigma_capture and sigma_nalpha;
it does not read cross sections in the file;

every entry in the input cross sections can be a MOOSE function possibly varying in space and/or time;

S

it uses a set of spatial points and a set of time to create the scattering and fission pattern.

This material is suitable for doing MMS (method of manufactured solutions) or doing some complicated spatial
kinetics benchmark calculations.

8.2.4.1 block

Refer to block in ConstantNeutronicsMaterial.

8.2.4.2 isMeter

Refer to isMeter in ConstantNeutronicsMaterial.

isMeter must be false.

8.2.4.3 plus

Refer to plus in ConstantNeutronicsMaterial.

8.2.44 AdjusterlUO

Refer to AdjusterlO in ConstantNeutronicsMaterial.

8.2.4.5 dumpMatAt

Refer to dumpMatAt in ConstantNeutronicsMaterial.

8.2.4.6 dumpMatOnElem

Refer to dumpMatOnElem in ConstantNeutronicsMaterial.

8.2.4.7 output

Refer to output in ConstantNeutronicsMaterial.

8.2.4.8 dbgmat

Refer to dbgmat in ConstantNeutronicsMaterial.
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8.2.4.9 disable_fission

Refer to disable_fission in ConstantNeutronicsMaterial.

8.2.4.10 material_id

Refer to material_id in ConstantNeutronicsMaterial.

It is only used for dumping the material into a INSTANT XML file when dbgmat is true.

8.2.4.11 sigma-t

Refer to sigma_t in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.

8.2.4.12 diffusion_coef

Refer to diffusion_coef in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.

8.2.4.13 sigma.r

Refer to sigma_r in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.

82414 L

Refer to L in ConstantNeutronicsMaterial.

8.2.4.15 sigma.s

Refer to sigima_s in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.

8.2.4.16 fissile

Refer to fissile in ConstantNeutronicsMaterial.

8.2.4.17 nu_sigma_f

Refer to nu_sigma_f in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
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8.2.4.18 chi

Refer to chi in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
8.2.4.19 mneutron_speed

Refer to neutron_speed in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
8.2.4.20 decay_constant

Refer to decay_constant in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
8.2.4.21 delay_fraction

Refer to delay_fraction in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
8.2.4.22 delay_spectrum

Refer to delay_spectrum in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
8.2.4.23 sigma_f

Refer to sigma_f in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.
8.2.4.24 kappa_sigma_f

Refer to kappa_sigma_f in ConstantNeutronicsMaterial.

Every element can be either a constant value or a MOOSE function.

8.2.4.25 sample_t

Description: Sampling time points for generating the material properties

Data type: Vector of reals
Default value: <empty>

Syntax: Materials/*/sample_t
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Note: This parameter is used together with sample_p. When both are not empty, they are used to sample the
cross sections and to create the fission and scattering pattern. If either one of them is empty, not sampling will
be done and fission and scattering are considered dense.

8.2.4.26 sample_p

Description: Sampling space points for generating the material properties
Data type: Vector of reals

Default value: <empty>

Syntax: Materials/*/sample_p

Note: The size of this parameter has to be 3 x 1, where n is the number of sampling points. Each point is
inputted with x, y and z-coordinates. This parameter is used together with sample_t. When both are not empty,
they are used to sample the cross sections and to create the fission and scattering pattern. If either one of them
is empty, not sampling will be done and fission and scattering are considered dense.

8.2.5 MixedNeutronicsMaterial

This material creates a fixed set of macroscopic cross sections and use it from the interpolation and mixing of
tabulated cross sections in YAKXS XML format. It does not bring in the feedback effect with the tabulated cross
sections.

8.2.5.1 block

Refer to block in ConstantNeutronicsMaterial.

8.2.5.2 isMeter

Refer to isMeter in ConstantNeutronicsMaterial.

8.2.5.3 plus

Refer to plus in ConstantNeutronicsMaterial.

8.2.5.4 AdjusterlO

Refer to AdjusterUO in ConstantNeutronicsMaterial.

8.2.5.5 dumpMatAt

Refer to dumpMatAt in ConstantNeutronicsMaterial.

220



8.2.5.6 dumpMatOnElem

Refer to dumpMatOnElem in ConstantNeutronicsMaterial.

8.2.5.7 output

Refer to output in ConstantNeutronicsMaterial.

8.2.5.8 dbgmat

Refer to dbgmat in ConstantNeutronicsMaterial.

8.2.5.9 disable_fission

Refer to disable_fission in ConstantNeutronicsMaterial.

8.2.5.10 material_id

Refer to material_id in ConstantNeutronicsMaterial.

Note: this parameter is used to read the correct library and used to dump the generated macroscopic cross
sections into INSTANT XML file when dbgmat is true.

8.2.5.11 multigroup_library

Description: File name of the multigroup library
Data type: string

Default value: <required>

Syntax: Materials/*/multigroup_library

Note: The file must be in YAKXS XML format.

8.2.,5.12 library_name

Description: Name of the multigroup library
Data type: string

Default value: <required>

Syntax: Materials/*/library_name

Note: Refer to [1] for the detailed YAKXS format.
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8.2.5.13 grid_names

Description: Names for all library parameters
Data type: Vector of strings

Default value: <required>

Syntax: Materials/*/grid_names

Note: The reference grid value will be used for the missing grids.

8.2.5.14 grid

Description: Grid names
Data type: Vector of integers
Default value: <required>
Syntax: Materials/*/grid

Note: The size of this parameter must be equal to the size of grid_names.

8.2.5.15 isotopes

Description: Name of isotopes
Data type: Vector of strings
Default value: <required>
Syntax: Materials/*/isotopes

Note: This parameter must not be empty.

8.2.5.16 densities

Description: Atomic densities of isotopes
Data type: Vector of reals

Default value: <required>

Syntax: Materials/*/densities

Note: The size of this parameter must be equal to the size of isotopes.

8.2.6 CoupledFeedbackNeutronicsMaterial

This material uses coupled variables to do the on-the-fly interpolation of the tabulated cross sections in YAKXS
XML format. It is currently not using coupled variables for isotope densities, instead densities stay constant
during the simulation.
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8.2.6.1 block

Refer to block in ConstantNeutronicsMaterial.

8.2.6.2 isMeter

Refer to isMeter in ConstantNeutronicsMaterial.

8.2.6.3 plus

Refer to plus in ConstantNeutronicsMaterial.

8.2.6.4 AdjusterlO

Refer to AdjusterUO in ConstantNeutronicsMaterial.

8.2.6.5 dumpMatAt

Refer to dumpMatAt in ConstantNeutronicsMaterial.

8.2.6.6 dumpMatOnElem

Refer to dumpMatOnElem in ConstantNeutronicsMaterial.

8.2.6.7 output

Refer to output in ConstantNeutronicsMaterial.

8.2.6.8 dbgmat

Refer to dbgmat in ConstantNeutronicsMaterial.

8.2.6.9 disable fission

Refer to disable_fission in ConstantNeutronicsMaterial.

8.2.6.10 material_id

Refer to material_id in ConstantNeutronicsMaterial.

Note: this parameter is used to get the correct library in library user object.

223



8.2.6.11 MGLibObject

Description: User object containing the desired XS library
Data type: string

Default value: <required>

Syntax: Materials/*/MGLibObject

Note: Refer to the MG library user object. We want to load the library in a separated object in order to avoid
possible multiple load of the library in the memory.

8.2.6.12 grid_names

Refer to grid_names in MixedNeutronicsMaterial.

8.2.6.13 grid_variables

Description: Interpolation points for all library parameters

Data type: Vector of variable names

Default value: <empty>

Syntax: Materials/*/grid_variables

Note: The size of this parameter must be equal to the size of grid_names.

8.2.6.14 isotopes

Refer to isotopes in MixedNeutronicsMaterial.

8.2.6.15 densities

Refer to densities in MixedNeutronicsMaterial.

8.2.7 CRoddedNeutronicsMaterial

This material is used to model the control-rod movement within a block. A control rod is illustrated in Fig. 23.
In the withdrawn direction, a control rod is divided into three parts: unrodded, rodded and driver. Control rod
length is the length of the rodded material. Control rod front is at the interface between rodded material and
unrodded material. Driver material are assumed to be infinite long while unrodded material will be filled in
the places on the other side of control rod front.

8.2.7.1 block

Refer to block in ConstantNeutronicsMaterial.
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Driver material

T Rodded material
Contral rad front

Un-rodded material

Figure 23 Control rod sketch.

8.2.7.2 isMeter

Refer to isMeter in ConstantNeutronicsMaterial.

8.2.7.3 plus

Refer to plus in ConstantNeutronicsMaterial.

8.2.74 AdjusterlUO

Refer to AdjusterlO in ConstantNeutronicsMaterial.

8.2.7.5 dumpMatAt

Refer to dumpMatAt in ConstantNeutronicsMaterial.

8.2.7.6 dumpMatOnElem

Refer to dumpMatOnElem in ConstantNeutronicsMaterial.

8.2.7.7 output

Refer to output in ConstantNeutronicsMaterial.

8.2.7.8 dbgmat

Refer to dbgmat in ConstantNeutronicsMaterial.

8.2.7.9 disable_fission

Refer to disable_fission in ConstantNeutronicsMaterial.
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8.2.7.10 front_position_function

Description: The front position of the control rod as a function of time
Data type: string
Default value: <required>

Syntax: Materials/*/front_position_function

8.2.7.11 rod_withdrawn_direction

Description: In which direction the control rod is withdrawn
Data type: Enumeration (/x/y/z/-x/-y/-z/)
Default value: z

Syntax: Materials/*/rod_withdrawn_direction

8.2.7.12 rod_length

Description: The rod length

Data type: Real

Default value: Maximum real number
Syntax: Materials/*/rod_length

Note: The default value means no driver material.

8.2.7.13 fileName

Refer to fileName in ConstantNeutronicsMaterial.

This parameter is required. File must be in xml type.

8.2.7.14 material_ids

Description: IDs of the material in the file
Data type: Vector of integers

Default value: <required>

Syntax: Materials/*/material_ids

Note: The size of this parameter can be two or three. If it is in size two, roded and unrodded material IDs are
given. If it is in size three, roded, unrodded and driver material IDs are given. It is also used for dumping the
material into a INSTANT XML file when fromFile is false and dbgmat is true.

8.3 Thermal radiation materials
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Thermal radiation materials are special because they are interacting with TransportSystems in the following
ways:

1. Thermal radiation materials cannot be defined across two discretization schemes even they are having
exactly the same scheme.

2. Thermal radiation materials cannot be used independently on discretization schemes.

8.3.1 Material properties declared by thermal radiation materials

All TR materials declare a set of material properties, which are listed in Table 23. This list could be useful
for advanced users who want to utilize those properties for postprocessing. Those properties are declared on
blocks on which the material are defined. The list of material properties can also be revealed during run-time
by setting show_material_props in the Debug block of the input file to true. It is noted that not all of them are
evaluated on element faces.

Table 23 Thermal radiation material properties.

Name Notation Type When is declared
light speed_g<g> Cg Real Always
grad_light_speed_g<g> @cg RealVector Varying light speed”
refractive_index_g<g> Cq Real Always

emissivity €,8=1, ,G std::vector<Real > Always
emissivity_g<g> €g Real Always
mean_emissivity € Real Always
rosseland_mean_emissivity 3 Real Always
temperature_matprop T Real Always
diffusion_coefficient_g<g> Dq Real Diffusion®
opacity_g<g> og Real Always
absorptivity_g<g> Qg Real Always

scattering_ g<p>_g<g> zfg J=0,---,L std::vector<Real> ScatteringPattern®
scattering n<1> Uz l—>g ,0,.8=1,---,G CSR<Real> NonzeroScatteringd
phase_function g<p>_g<g> ppg() PhaseFunction pointer ~Using phase function®

? When the material type is FunctionTRMaterial and the light speed is not a ConstantFunction;
b Diffusion means that scheme is equal to CFEM-Diffusion or DFEM-Diffusion;

¢ ScatteringPattern means that the property will be declared for the non-zero scattering entries;
4 NonzeroScattering means that there is scattering for this material;

¢ When use_phase_function is set to true.

8.3.2 ConstantTRMaterial

This material provides the basic capability of doing multigroup thermal-radiation transport calculations.

8.3.2.1 block

Refer to block in ConstantNeutronicsMaterial.
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8.3.2.2 dumpMatAt

Refer to dumpMatAt in ConstantNeutronicsMaterial.

8.3.2.3 dumpMatOnElem

Refer to dumpMatOnElem in ConstantNeutronicsMaterial.

8.3.2.4 output

Refer to output in ConstantNeutronicsMaterial.

8.3.2.5 dbgmat

Refer to dbgmat in ConstantNeutronicsMaterial.

8.3.2.6 use_phase_function

Description: True to use phase functions for the high-order scattering
Data type: Logical

Default value: <false>

Syntax: Materials/*/use_phase_function

Note: If this parameter is true, higher order scattering cross sections provided through other means will be
ignored. Otherwise, phase_function_names, phase_function_departuring_groups and phase_function_arriving_groups
should not be provided.

8.3.2.7 phase_function_names

Description: Phase function names

Data type: Vector of strings

Default value: <empty>

Syntax: Materials/*/phase_function_names

Note: Refer to Phase Functions for more information.

8.3.2.8 phase_function_departuring_groups

Description: Departuring groups of phase functions
Data type: Vector of integers

Default value: <empty>

Syntax: Materials/*/phase_function_departuring_groups

Note: The size of this parameter must be equal to the size of phase_function_names
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8.3.2.9 phase_function_arriving_groups

Description: Arriving groups of phase functions
Data type: Vector of integers

Default value: <empty>

Syntax: Materials/*/phase_function_arriving_groups

Note: The size of this parameter must be equal to the size of phase_function_names if phase_function_names,
phase_function_departuring_groups and phase_function_arriving_groups are lined up. The pairs which are not speci-
fied in phase_function_departuring_groups and phase_function_arriving_groups are assuming isotropic scattering.

8.3.2.10 absorptivity

Description: Absorptivities

Data type: Vector of reals
Default value: <required>
Syntax: Materials/*/absorptivity

Note: The size of this parameter must be equal to the size of G.

8.3.2.11 emissivity

Description: Emissivities
Data type: Vector of reals
Default value: <empty>
Syntax: Materials/*/emissivity

Note: If this parameter is given, the size of this parameter must be equal to the size of G, otherwise emissivities
are assumed to be the same as absorptivities based on LTE (local thermaldynamic equilibrium).

8.3.2.12 light_speed

Description: Light speeds in the medium
Data type: Vector of reals

Default value: <required>

Syntax: Materials/*/light_speed

Note: The size of this parameter must be equal to the size of G.

8.3.2.13 L

Refer to L in ConstantNeutronicsMaterial.

This number is also used to truncate the phase function scattering if use_phase_function is true.

229



8.3.2.14 scattering

Description: Scattering matrix
Data type: Vector of reals
Default value: <empty>
Syntax: Materials/*/scattering

Note: The size of this parameter must be equal to G? when use_phase_function is true or must be equal to G2 x
(L+1) when use_phase_function is false.

8.3.2.15 material_id

Refer to material_id in ConstantNeutronicsMaterial.

8.3.3 FunctionTRMaterial

8.3.3.1 block

Refer to block in ConstantNeutronicsMaterial.

8.3.3.2 dumpMatAt

Refer to dumpMatAt in ConstantNeutronicsMaterial.

8.3.3.3 dumpMatOnElem

Refer to dumpMatOnElem in ConstantNeutronicsMaterial.

8.3.3.4 output

Refer to output in ConstantNeutronicsMaterial.

8.3.3.5 dbgmat

Refer to dbgmat in ConstantNeutronicsMaterial.

8.3.3.6 use_phase_function

Refer to use_phase_function in ConstantTRMaterial.
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8.3.3.7 phase_function_names

Refer to phase_function_names in ConstantTRMaterial.

8.3.3.8 phase_function_departuring_groups

Refer to phase_function_departuring_groups in ConstantTRMaterial.

8.3.3.9 phase_function_arriving_groups

Refer to phase_function_arriving_groups in ConstantTRMaterial.

8.3.3.10 absorptivity

Refer to absorptivity in ConstantTRMaterial. Every entry can be a MOOSE function.

8.3.3.11 emissivity

Refer to emissivity in ConstantTRMaterial. Every entry can be a MOOSE function.

8.3.3.12 light_speed

Refer to light speed in ConstantTRMaterial. Every entry can be a MOOSE function.

8.3.3.13 L

Refer to L in ConstantNeutronicsMaterial.

8.3.3.14 scattering

Refer to scattering in ConstantTRMaterial. Every entry can be a MOOSE function.

8.3.3.15 material_id

Refer to material_id in ConstantNeutronicsMaterial.
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9 Executioner

Rattlesnake utilizes PETSc for solving the discretized transport system through the MOOSE framework. The
following subsections detail the control parameters of all the executioners available in Rattlesnake. We will give
an introduction on the methods used by the executioners in each subsection in order to let users have better
understanding on those control parameters. Most of parameters have default values and do not need users’
input for typical calculations.

9.1 Steady

It is a general solver provided by MOOSE to solve the finite-dimensional steady-state nonlinear or linear prob-
lem:

F(x) = 0. (43)

By default the line-search Newton in PETSc is used with the PJFNK (preconditioned Jacobian-free Newton
Krylov) method. At each Newton iteration the executioner solves

J(xm)ex = F(x" D), (44)
where
J(x" V) = Fe(x)] Loy (45)

is the Jacobian matrix evaluated at x"~1). Jacobian matrix depends on x("~1) for general nonlinear problems

while it is constant for linear problems. The right hand side is also typically termed as the residual at x("~1)
of Eq. (43). The Krylov methods are employed for solving the above linear equation, which essentially requires

the matrix-vector product operation J(x("~1))y possibly through a matrix-free operation

F(x' +ey) ~ F(x")

: : (46)

where the scalar value € is chosen by PETSc automatically to approximate J(x("~1))y accurately for the linear
solve. Section 5.5 of PETSc user’s manual on matrix-free methods details the algorithm for choosing the €. The
Krylov methods typically also require an approximation of the Jacobian P(x"~1) as the preconditioning matrix.
Although the preconditioning matrix is seldom the exact Jacobian J. By default the type of Krylov method in
use is GMRes because it does not have assumptions on the underlining Jacobian. The initial guess of the linear
solve is always set to zero, which also means that the initial linear residual is the same of the nonlinear residual.
The residual norm at each linear iteration is evaluated by PETSc, for instance, during updating Hessenberg if
GMRes method is used. The solution is updated after the linear solve with

X" =x""1 4 asx™ 47)

where « is determined by the line-search algorithm. We can see that at each nonlinear or Newton iteration, we
will need a preconditioning matrix evaluation and a residual evaluation with the updated solution. At each
linear iteration, we simply need a residual evaluation and the operation of the preconditioner built from the
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preconditioning matrix. In a linear problem, F(x) can be expressed as Ax — b, where matrix A is the Jacobian
independent on x. It is noted that the default preconditioner type depends on the number of processors and
also depends on the assembled preconditioning matrix P. Typically incomplete LU (PCILU) is the default type
with one processor and block Jacobi (PCBJACOBI) is the type with multiple processors. Consequently, you will
not see the same convergence with the different number of processors.

9.1.1 [.max_its

Description: Maximum linear iterations per nonlinear iteration
Data type: Integer

Default value: 10000

Syntax: Executioner/l_max_its

Note: This parameter is used to control the solving of Eq. (44). It essentially used to set the default value of a
PETSc control parameter -ksp_max_it. Users are allowed to directly use the PETSc control parameter -ksp_max_it
to overwrite this parameter.

9.1.2 [_tol

Description: Relative linear tolerance
Data type: Real

Default value: 107°

Syntax: Executioner/1_tol

Note: This parameter is used to control the solving of Eq. (44). It essentially used to set the default value of
a PETSc control parameter -ksp_rtol. Users are allowed to directly use the PETSc control parameter -ksp_rtol to
overwrite this parameter. The convergence criteria in PETSc is

HF(X(”*U) _ J(xn=D)gx(n)

, < max(rtol HF(X(”*U)‘

2,at‘ol), (48)

where rtol is this parameter and atol is [_abs_step_tol.

9.1.3 [_abs_step_tol

Description: Absolute linear tolerance on the residual change per linear step
Data type: real

Default value: —1

Syntax: Executioner/l_abs_step_tol

Note: This parameter is NOT active in this executioner. PETSc control parameter -ksp_atol can be used for setting
this parameter. The default value of this PETSc parameter is 10>, which means ! tol will probably always take
the effect.
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9.1.4

line_search

Description: Specifies the line search type

Data type: Enumeration (/default/shell/none/basic/12/bt/cp/)

Default value: default

Syntax: Executioner/line_search

Note:

This parameter is used to control the evaluation of « in Eq. (47). It essentially used to set the default

value of a PETSc control parameter -snes_linesearch_type. Users are allowed to directly use the PETSc control
parameter -snes_linesearch_type to overwrite this parameter.

9.1.5

solve_type

Description: Control how solve are proceeded
Data type: Enumeration (/PJFNK/JFNK/NEWTON/FD/LINEAR/)
Default value: PJFNK

Syntax: Executioner/solve_type

Note:

9.1.6

PJFNK is the default solve type. It makes the executioner perform Jacobian-free linear solves at each
Newton iteration with the preconditioner built from the preconditioning matrix P. The preconditioning
matrix is block-diagonal with each block corresponding to a variable by default. Off-diagonal Jacobian
terms are ignored. Refer to ?? for more on how the preconditioning matrix is structured and assembled. It
essentially activates the matrix-free Jacobian-vector products, and the preconditioning matrix, by setting
the PETSc control parameter -snes_mf_operator.

JENK means there is no preconditioning during the Krylov solve. No Jacobian P(x" 1) will be assembled.
It essentially activates the matrix-free Jacobian-vector products, and no preconditioning matrix, by setting
the PETSc control parameter -snes_mf.

LINEAR will use PETSc control parameter -ksp_only to set the type of SNES for solving the linear sys-
tem. Note that it only works when you have an exact Jacobian because it is not activating matrix-free
calculations. If the Jacobian is not exact, users need to set -snes_mf or -snes_mf_operator in his input ex-
plicitly through pets_coptions. All the control parameters nl_abs_step_tol, nl_abs_tol, nl_max_funcs, nl_max_its,
nl_rel_tol and nl_rel_step_tol for the Newton iteration will be ignored.

NEWTON means PETSc will use the Jacobian provided by Rattlesnake (typically not exact) to do the
Krylov solve. If the Jacobian is not exact, Newton update in Eq. (47) will not reduce the residual effectively
and typically results into an unconverged Newton iteration.

FD means the real Jacobian will be assembled by calling residual evaluations at each Newton step by
seting the PETSc control parameter -snes_fd. And then this Jacobian will be used during the Krylov solve.
It is costly and should used only for testing purpose.

nl_abs_step_tol

Description: Nonlinear absolute step tolerance

Data type: Real

Default value: 100

Syntax: Executioner/solve_type

Note:

This parameter is never used.
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9.1.7 nl_abs_tol

Description: Nonlinear absolute tolerance
Data type: Real

Default value: 10~

Syntax: Executioner/nl_abs_tol

Note: This parameter is used to control the termination of the Newton iteration. It essentially used to set
the default value of a PETSc control parameter -snes_atol. Users are allowed to directly use the PETSc control
parameter -snes_atol to overwrite this parameter.

9.1.8 nl.max_funcs

Description: Max nonlinear solver function evaluations
Data type: Integer

Default value: 10000

Syntax: Executioner/nl_-max_funcs

Note: This parameter is used to control the termination of the Newton iteration. It essentially used to set the
default value of a PETSc control parameter -snes_max_funcs. Users are allowed to directly use the PETSc control
parameter -snes_max_funcs to overwrite this parameter.

9.1.9 nl_max_its

Description: Maximum nonlinear iterations
Data type: Integer

Default value: 50

Syntax: Executioner/nl_max_its

Note: This parameter is used to control the termination of the Newton iteration. It essentially used to set the
default value of a PETSc control parameter -snes_max_it. Users are allowed to directly use the PETSc control
parameter -snes_max_it to overwrite this parameter.

9.1.10 nl_rel_tol

Description: Nonlinear relative tolerance
Data type: Real

Default value: 108

Syntax: Executioner/nl_rel_tol

Note: This parameter is used to control the termination of the Newton iteration. Be warned that if n/_abs_tol
is not set to a meaningful value, the default value of this parameter may be overly tight and results into un-
converged solve due to the machine round-off and a small initial residual. It essentially used to set the default
value of a PETSc control parameter -snes_rtol. Users are allowed to directly use the PETSc control parameter
-snes_rtol to overwrite this parameter.
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9.1.11 nl_rel_step_tol

Description: Nonlinear relative step tolerance
Data type: Real

Default value: 10~

Syntax: Executioner/nl_rel_step_tol

Note: This parameter is used to control the termination of the Newton iteration. It essentially used to set
the default value of a PETSc control parameter -snes_stol. Users are allowed to directly use the PETSc control
parameter -snes_stol to overwrite this parameter. Note that the default value of the PETSc control parameter is
1075,

9.1.12 petsc_options

Description: Used to set singleton PETSc options
Data type: Vector of strings
Default value: <empty>

Syntax: Executioner/petsc_options

9.1.13 petsc_options_iname

Description: Names of PETSc name/value pairs
Data type: Vector of strings
Default value: <empty>

Syntax: Executioner/petsc_options_iname

9.1.14 petsc_options_value

Description: Values of PETSc name/value pairs
Data type: Vector of strings

Default value: <empty>

Syntax: Executioner/petsc_options_value

Note: The parameter must correspond with petsc_options_value. petsc_options, petsc_options_iname and petsc_options_value
give users the ultimate flexibility by directly interact with PETSc without providing them in the command-line.
Every PETSc control parameters can be inputted. Several PETSc parameters that users could frequently use are
listed in Table 24.

Table 24 Frequently used PETSc parameters.

PETSc parameter name PETSc parameter value Description

-pc-type  hypre To set the preconditioner type to HYPRE
-pc_hypre_type boomeramg To use HYPRE BoomerAMG for preconditioning
-ksp_gmres_restart 100 To set the number of GMRes iterations for restart

More to be added when necessary...
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9.2 Preconditioner

Preconditioner is closely related with the executioner, so we make it as a subsection of Executioner. Preconditioner
block controls how the preconditioning matrix is built and how the preconditioner is constructed. Several
preconditioners are provided by Rattlesnake. The following parameter is used to choose which preconditioner
is built.

9.21 type

Description: Type of the preconditioner
Data type: String

Default value: <required>

Syntax: Preconditioner/*/type

Note: Currently available preconditioners are listed in Table 25:

Table 25 Rattlesnake preconditioners.

Type Full name

SMP  Single matrix preconditioner
FDP  Finite difference preconditioner
PBP  Physics-based preconditioner
BDP  Block-diagonal preconditioner

9.2.2 SMP (single matrix preconditioner)

This preconditioner is provided by MOOSE. It simply changes the default way (block-diagonal) of structuring
the preconditioning matrix. Block diagonal submatrices will be always added. The preconditioner provide
ways for adding more submatrices.

9.2.2.1 pc_side

Description: Preconditioning side

Data type: Enumeration (/left/right/symmetric/)
Default value: right

Syntax: Preconditioner/*/pc_side

Note: Directly setting PETSc parameters -ksp_left_pc, -ksp_right_pc and -ksp_symmetric_pc will overwrite this pa-
rameter.
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9.2.2.2  full

Description: Set to true if you want the full set of couplings
Data type: Logical

Default value: false

Syntax: Preconditioner/*/full

Note: This parameter provides a convenient way of having the full preconditioning matrix.

9.2.2.3 off diag_row

Description: The off diagonal row you want to add into the matrix
Data type: Vector of strings

Default value: <empty>

Syntax: Preconditioner/*/off_diag_row

Note: It need to be associated with an off diagonal column from the same position in off_diag_column. Elements
of this parameter are the primal variable names.

9.2.2.4 off-diag_column

Description: The off diagonal column you want to add into the matrix
Data type: Vector of strings

Default value: <empty>

Syntax: Preconditioner/*/off_diag_column

Note: It need to be associated with an off diagonal row from the same position in off_diag_row. Elements of this
parameter are the primal variable names.

9.2.2.5 coupled_groups

Description: Multiple space separated groups of comma separated variables.
Data type: Vector of strings

Default value: <empty>

Syntax: Preconditioner/*/coupled_groups

Note: Off-diagonal jacobians will be generated for all pairs within a group. Elements of this parameter are the
primal variable names. An example of this parameter could be "ul,u2 u3,u4’ in a system with ul, u2, u3, u4 and
ub being the four primal variables, which will create a block matrix in the following pattern:

[ ul u2 ud ud u5 ]
ul | x X
u2 | x X
u3 X X
u4d X X
| ub x|
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9.2.3 FDP (finite difference preconditioner)

This preconditioner is provided by MOOSE. It simply changes the default way (through MOOSE Jacobian
evaluation, which may not be exact) of assembling the preconditioning matrix. Block diagonal submatrices will
be always assembled. Other submatrices can be assembled through parameters full, off_diag_row, off_diag_column
and coupled_groups as in SMP. It is noted that this preconditioner only works with one single processor. It is
costly and should used only for testing purpose. One difference of this preconditioner with respect to FD solve
type in solve_type is that it provides more controls on how the preconditioning matrix are structured.

9.2.3.1 pc_side

Refer to pc_side in SMP.

9.2.3.2 full

Refer to full in SMP.

9.2.3.3 off-diag_row

Refer to off diag_row in SMP.

9.2.3.4 off-diag_column

Refer to off_diag_colummn in SMP.

9.2.3.5 coupled_groups

Refer to coupled_groups in SMP.

9.2.4 PBP (physics-based preconditioner)

This preconditioner is provided by MOOSE. It builds a shell, i.e. user-defined, preconditioner for PETSc. It
builds systems for all primal variables, which is used for applying the local preconditioner of the linear system
form by the diagonal block Jacobian of the variable and the right hand side formed by the following;:

N
b; =x; — Y ciPi;yj (49)
=1

where x is the global vector passed into the preconditioner and y is the global vector outputted by the precon-
ditioner. P is the preconditioning matrix. c¢ specify the pattern of the preconditioning matrix determined by
full, off diag_row and off diag_column. Its elements are either 0 or 1. Subscript i and j are used for indexing the
variable. When this preconditioner is used solve_type is no longer active, the solve type is set to JENK by PBP.

9.2.4.1 pc_side

Refer to pc_side in SMP.

239



9.2.42 full

Refer to full in SMP.

9.2.4.3 off-diag_row

Refer to off_diag_row in SMP.

9.2.4.4 off -diag_column

Refer to off_diag_column in SMP.

9.2.4.5 preconditioner

Description: To specify the preconditioning type of all variables
Data type: Vector of strings

Default value: <required>

Syntax: Preconditioner/*/preconditioner

Note: The current supported types are: IDENTITY, JACOBI, BLOCK_JACOBI, SOR, EISENSTAT, ASM, CHOLESKY,
ICC, ILU, LU, SHELL and AMG. IDENTITY means no preconditioning and AMG is using HYPRE Boomer-
AMG. You can find mappings of the other types to PETSc preconditioner types. The size of the parameter must

be equal to the number of primal variables. The type is assigned to variables based on their internal ordering.

9.2.4.6 solve_order

Description: The order the block rows will be solved in
Data type: Vector of strings

Default value: <required>

Syntax: Preconditioner/*/solve_order

Note: The elements of this parameter are the name of primal variables, which stand for solving that variable’s
block row. It is noted that a variable may appear more than once (to create cylces if you like).

When setup is called for this preconditioner?

9.2.5 BDPreconditioner (block-diagonal preconditioner)

This preconditioner is provided by Rattlesnake. It builds a shell, i.e. user-defined, preconditioner for PETSc. It
builds a system for all primal variables, which is used for applying the local preconditioner of the linear system
form by the diagonal block Jacobian of the variable and the right hand side directly from the global vector
passed into the preconditioner. Because of this, all primal variables should be defined on the same mesh and
using the same shape functions in the same order. It simply loop through all variables once and apply the local
preconditioners when preconditioning. The preconditioning type is hardcoded as HYPRE BoomerAMG. In this
regard, it is a special case of PBP. However it provide few convenient parameters as the following. When this
preconditioner is used solve_type is no longer active, the solve type is set to JENK.
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9.2.5.1 pc_side

Refer to pc_side in SMP.

9.2.5.2 rel_tol

Description: Relative tolerance with respect to the initial residual for solving all variables
Data type: Real

Default value: 108

Syntax: Preconditioner/*/rel_tol

Note: More than one multigrid cycles may be required to obtain the convergence.

9.2.5.3 max_iter

Description: Maximum number of AMG cycles
Data type: Integer
Default value: 100

Syntax: Preconditioner/*/rel_tol

9.2.5.4 verbose

Description: True to output progress on screen
Data type: Integer

Default value: 1

Syntax: Preconditioner/*/verbose

Note: The bigger this number is the more screen print-out will be.

9.2.5.5 pre_assemble

Description: Whether or not pre-assemble the Jacobian before starting the linear solve
Data type: Integer

Default value: 0

Syntax: Preconditioner/*/pre_assemble

Note: If this parameter is equal to 1, the Jacobian will be assembled at each linear solve, which is extremely
slow although memory usage is significantly reduced.
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9.2.5.6 fix_jacobian

Description: True to assemble matrices once
Data type: Logical

Default value: False

Syntax: Preconditioner/*/fix_jacobian

Note: This parameter will be ignored when pre_assemble is not equal to 1. Users should set this parameter to
true only when the Jacobian is constant.

9.2.6 SNSweepPreconditioner

This preconditioner is provided by Rattlesnake. It only works with DFEM-SN. It informs transport system to
set up a user object for mesh sweeping. It then uses the user object to perform the transport sweep as the
preconditioner of the solve. The advantage of this preconditioner is that it is completely matrix-free. It does
not requires the building of the Jacobian. Hence, the memory usage can be significantly reduced. When this
preconditioner is used solve_type is no longer active, the solve type is set to JENK. It only has one parameter:

9.2.6.1 pc_side

Refer to pc_side in SMP.

9.3 Transient

It is a general solver provided by MOOSE to solve the finite-dimensional transient nonlinear or linear problem:

AT (x(t), 1)

It = —R(x(#),1), (50)

with the initial condition
x(to) = xo, (51)
This executioner uses method of lines to treat the time independent variable. Using implicit Euler scheme as an

example, at every time step, we are solving

T(x,t) — T(x"’d, t”ld)
At

= —R(X, t)/ (52)

where At = t — t°_If we define F(x) as

T(XOld, told)

At ! (53)

F(x) = R(x,t) + éT(x,t) -

told old

where f, and x°“ are given, at every time step we are solving a finite-dimensional steady-state nonlinear
or linear problem in Eq. (43). We can use our machinery implemented in the Steady executioner to solve it at
every time step and then match forward. Because of this, all parameters of Steady are also valid parameters of
Transient. Implicit Euler is just one of the integration scheme, the full list of integration schemes are given in
scheme. It is seldom to step to the end time with the same time steps. MOOSE provides several time steps for
adjust the time steps for reducing the number of time steps required for achieving a certain accuracy.
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9.3.1 Steady parameters

All parameters of Steady are valid parameters. Refer to Steady for more information.

9.3.2 scheme

Description: Time integration scheme used
Data type: Enumeration (/implicit-euler/explicit-euler/crank-nicolson/bdf2 /rk-2/dirk/)
Default value: implicit-euler

Syntax: Executioner/scheme

9.3.3 start_time

Description: The start time of the simulation
Data type: Real
Default value: 0

Syntax: Executioner/start_time

9.3.4 end_time

Description: The end time of the simulation
Data type: Real
Default value: 103

Syntax: Executioner/end_time

9.3.5 dt

Description: The timestep size between solves
Data type: Real
Default value: 1

Syntax: Executioner/dt

9.3.6 dtmin

Description: The minimum timestep size in an adaptive run
Data type: Real
Default value: 2 x 10714

Syntax: Executioner/dtmin
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9.3.7 dtmax

Description: The maximum timestep size in an adaptive run
Data type: Real
Default value: 103

Syntax: Executioner/dtmax

9.3.8 num_steps

Description: The number of timesteps in a transient run
Data type: Integer
Default value: The maximum unsigned integer

Syntax: Executioner/num_steps

9.3.9 abort_on_solve_fail

Description: Abort if solve not converged rather than cut timestep
Data type: Logical
Default value: false

Syntax: Executioner/abort_on_solve._fail

9.3.10 timestep_tolerance

Description: The tolerance setting for final timestep size and sync times
Data type: Real
Default value: 2 x 1014

Syntax: Executioner/timestep_tolerance

9.3.11 reset_dt

Description: Use when restarting a calculation to force a change in dt
Data type: Logical
Default value: false

Syntax: Executioner/reset_dt

9.3.12 n_startup_steps

Description: The number of timesteps during startup
Data type: Logical
Default value: false

Syntax: Executioner/n_startup_steps
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9.3.13 trans_ss_check

Description: Whether or not to check for steady state conditions
Data type: Logical
Default value: false

Syntax: Executioner/trans_ss_check

9.3.14 ss_check_tol

Description: Whenever the relative changes in the solution vector by less than this the solution will be consid-
ered to be at steady state

Data type: Real

Default value: 108

Syntax: Executioner/ss_check_tol

9.3.15 picard_max_its

Description: Number of times each timestep will be solved.
Data type: Integer

Default value: 1

Syntax: Executioner/picard_max_its

Note: Default value one means no Picard iterations on time steps. This parameter is mainly used when wanting
to do Picard iterations with MultiApps that are set to execute_on timestep_end or timestep_begin.

9.3.16 picard_rel_tol

Description: The relative nonlinear residual drop to shoot for during Picard iterations
Data type: Real

Default value: 108

Syntax: Executioner/picard_rel_tol

Note: This check is performed based on the Master application’s nonlinear residual. The nonlinear residual is
re-evaluated at the end of each Picard iteration where all variable transfers has been accomplished or states are
updated.

9.3.17 picard_abs_tol

Description: The absolute nonlinear residual to shoot for during Picard iterations
Data type: Real

Default value: 1070

Syntax: Executioner/picard_abs_tol

Note: This check is performed based on the Master application’s nonlinear residual. By default, this tolerance
will not take effect.
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9.3.18 use_multiapp_dt

Description: To determine how MultiApps affect the time steps
Data type: Logical

Default value: False

Syntax: Executioner/use_multiapp_dt

Note: If true then the dt for the simulation will be chosen by the MultiApps. If false (the default) then the
minimum over the master dt and the MultiApps is used.

9.3.19 Timelntegrator

(advanced topic, more to be added.)

MOOSE provides the following implicit Timelntegrators:

Backward Euler (default)
e BDF2

e Crank-Nicolson

Implicit-Euler

Implicit Midpoint (implemented as two-stage RK method)

Diagonally-Implicit Runge-Kutta (DIRK) methods of order 2 and 3.
And these explicit Timelntegrators:

o Explicit-Euler
o Explicit Midpoint
e Heun’s Method

e Ralston’s Method

Each one of these supports adaptive time stepping in TimeStepper.

9.3.20 TimeStepper

(advanced topic, from MOOSE wiki, more to be added.)

TimeSteppers are lightweight objects used for computing suggested time steps for transient executioners. MOOSE
has several built-in TimeSteppers

e ConstantDT

SolutionTimeAdaptiveDT

IterationAdaptiveDT

FunctionDT

PostprocessorDT
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e DT2:
The steps of doing DT2:

1. Take one time step of size At to get 11,11 from u,;

. Take two time steps of size % to get u, 1 from uy;

. Calculate local relative time discretization error estimate: &, = H””“*u”ﬂl l2 ;
max(|[un41]l2,[[8n+1[2)

g é\J .
= Al’
. Adaptivity is based on target error tolerance erp; and a maximum acceptable error tolerance epsax.

2
3
4. Obtain global relative time discretization error estimate e,
5

1/p
If e, < epmax, continue with a new time step size At, 11 = Aty - (%) where p is the global
convergence rate of the time stepping scheme. If e, > eprax, or if the solver fails, shrink Af;

6. Parameters erpr and epax can be specified in the input file as e_tol and e_max (in the Executioner
block).

9.3.21 Quadrature

(advanced topic, to be added.)

9.4 InversePowerMethod

The operator form of the steady-state eigenvalue problem of the neutron transport equation is
A(x) = B(x), (54)

where A represents all the events neutrons undergo in a background media, including collision, streaming,
scattering, absorption, and etc. except fission. B represents the fission event. A, B can be linear or nonlinear.
x is the solution. It could be the angular fluxes of some selected directions with SN calculations or the angular
flux moments up to a certain order with PN calculations. For the details of the equation, readers are referred
to textbooks such as "Nuclear Reactor Analysis by James J. Duderstadt and Louis ]J. Hamilton”. We adjust the
strength of fission by varying a scalar coefficient k so that the system can have self-sustained neutron popula-
tions without any external neutron sources. It is noted that we can have the self-sustained neutron populations
in reality because the averaged neutrons emitted from fission after forming a compound nucleus is more than
one, actually about 2.6. To this end, neutronics often cares only the minimum adjustment of the system or the
maximum k, which has the physical meaning as the multiplication factor. When k > 1, the system is super-
critical. Nuclear bomb is an example super-critical system. When k < 1, the system is sub-critical. When k =1,
the system is critical. It is also noted that k is always positive. 1/k is indeed the minimum eigenvalue of the sys-
tem and always positive determined by the physics. Typically we are only interested in the absolute minimum
eigenvalue and the corresponding eigenvector of the system, referred as the fundamental mode later.

The algorithm of doing inverse power iteration is given in Algorithm 1. We notice immediately that ‘Bgcx)l

. . . . . ©) . S
remains constant during the iteration, so if we make % equal to one, the algorithm can be simplified a

little into Algorithm 2.

Also in this simplified algorithm, the solution is automatically normalized making |B(x)| = k. We can do
postprocessing to normalize the solution so that |x| = ¢, where |.| can be any norm and c is a scalar constant.
If the minimum eigenvalue and the second smallest eigenvalue are close, i.e. the dominant ratio is about to
one, the inverse power iteration converges very slowly. In such a case, we can apply accelerations, such as
Chebyshev acceleration, based on the on-the-fly estimation of the dominant ratio. The details of Chebyshev
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Algorithm 1 Inverse power iteration

1: Initialization:

KO = ko

0)

X( = Xp-

2: Update x by performing a steady-state solve ¥ and update k:

1
k(n—1)
i) _ -1y _[BO)[ |B(X(”))|
[B(x("=1)]|

A(x") = B(x") (55)

3: Check the convergence

k() — k(n=1)]
7“((”)‘ < €
and
(n) _ x(n=1)
LSt S D (56)

<]

When either of them is not true, return Step 2, otherwise exit.

¥ Note that we typically do not need to have a full solve. The currently code will only perform one Newton iteration.

Algorithm 2 Inverse power iteration

1: Initialization:

KO = ko
0) — g, X0
T B (o)

2: Update x by performing a steady-state solve and update k:

1 .
A(X(n)) = k(n=1) B(X( 1))
Y = [B(x")|

3: Check the convergence
k() — f(n=1)]
7“{(”)‘ < €k

and

|x(”) — x(”71)|
<y

07

When either of them is not true, return Step 2, otherwise exit.
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acceleration can be found in paper "Optimized Iteration Strategies and Data Management Considerations for
Fast Reactor Finite Difference Diffusion Theory Codes” by Ferguson, D. R. and Derstine, K. L. on Nuclear
Science and Engineering, Vol.64, 1977. The inverse power method is appealing because we can use PJFNK
(preconditioned Jacobian-free Newton Krylov) for solving for the updated solution and we do not have to
exactly assemble matrix A for the preconditioning purpose.

9.4.1 [.max_its

Refer to [_max_its in Steady.

9.4.2 pfactor

Description: Relative linear tolerance
Data type: Real

Default value: 0.01

Syntax: Executioner /pfactor

Note: This parameter is used to control the solving of Eq. (55). It essentially used to set the default value of
a PETSc control parameter -ksp_rtol. Users are allowed to directly use the PETSc control parameter -ksp_rtol to
overwrite this parameter. The convergence criteria in PETSc is

Hp(x(n—l)) — J(x=1)gx(m)

, < max(rtol HF(X(H_U)‘

2,atol), (57)

where rtol is this parameter and atol is [_abs_step_tol.

9.4.3 I_abs_step_tol

Refer to [_abs_step_tol in Steady.

9.4.4 line_search

Refer to line_search in Steady.

9.4.5 solve_type

Refer to solve_type in Steady.

9.4.6 petsc_options

Refer to petsc_options in Steady.

9.4.7 petsc_options_iname

Refer to petsc_options_iname in Steady.

9.4.8 petsc_options_value

Refer to petsc_options_value in Steady.
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9.4.9 auto_initialization

Description: True to ask the solver to set a nonzero initial solution xg
Data type: Logical
Default value: true

Syntax: Executioner/auto_initialization

9.4.10 eig_check_ tol

Description: Eigenvalue convergence tolerance €
Data type: Real
Default value: 10~°

Syntax: Executioner/eig_check_tol

9.4.11 Chebyshev_acceleration_on

Description: If Chebyshev acceleration is turned on
Data type: Logical
Default value: true

Syntax: Executioner/Chebyshev_acceleration_on

9.4.12 kO

Description: Initial guess of the eigenvalue kg
Data type: Real
Default value: 1

Syntax: Executioner/k0

9.4.13 max_power_iterations

Description: The maximum number of power iterations
Data type: Integer
Default value: 300

Syntax: Executioner/max_power_iterations

9.4.14 min_power_iterations

Description: The minimum number of power iterations
Data type: Integer
Default value: 1

Syntax: Executioner/min_power_iterations
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9.4.15 xdiff

Description: Name of the postprocessor evaluating |x(") — x("~1)|
Data type: String

Default value: <empty>

Syntax: Executioner/xdiff

Note: If this processor is not given, no convergence check with Eq. (56) will be performed.

9.4.16 sol_check_tol

Description: Relative tolerance on the solution ey
Data type: Real

Default value: Maximum real value

Syntax: Executioner/sol_check_tol

Note: This parameter is activated only when xdiff is provided.

9.4.17 time

Description: To set the system time with this value
Data type: Real

Default value: 0

Syntax: Executioner/time

Note: This parameter is useful when the default system time is not equal to zero.

9.4.18 mnormalization

Description: Name of the postprocessor evaluating |x|
Data type: String

Default value: <empty>

Syntax: Executioner/normalization

Note: If this processor is not given, no final normalization after the power iteration will be performed.

9.4.19 normal_factor

Description: To normalize x to make |x| equal to this factor
Data type: Real

Default value: <empty>

Syntax: Executioner/normal_factor

Note: This parameter is required when normalization is provided.
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9.4.20 output_before_normalization

Description: True to output a step before normalization
Data type: Logical
Default value: true

Syntax: Executioner/output_before_normalization

9.4.21 output_on_final

Description: True to disable all intemediate outputs
Data type: Logical
Default value: false

Syntax: Executioner/output_on_final

9.5 NonlinearEigen

Continuing the introduction part of InversePowerMethod, we can see the eigenvalue problem can be viewed
as a nonlinear problem

A(x) = %B(x), (58)
k= |B(x)]. (59)

So we can use the Newton method to solve it. However, this nonlinear problem has multiple number of solu-
tion other than the fundamental mode we are interested in. So to make the solving converge to the fundamental
mode, we need to have a fairly close initial guess to the fundamental mode. This can be achieved with several
free power iterations before the Newton iteration. We do not have to have k as part of the solution vector. In-
stead we can apply the elimination technique see ”Acceleration of k-Eigenvalue/Criticality Calculations Using
the Jacobian-Free Newton-Krylov Method” by D. A. Knoll and H. Park and C. Newman on Nuclear Science
and Engineering, Vol. 167, 2011, i.e. solve the following

1

A(x) = WB(X). (60)

Again we can use PJFNK (preconditioned Jacobian-free Newton Krylov) method to solve this nonlinear prob-
lem.

9.5.1 [.max_its

Refer to [_max_its in Steady.

9.5.2 pfactor

Refer to pfactor in InversePowerMethod.
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9.5.3 [l_abs_step_tol

Refer to [_abs_step_tol in Steady.

9.5.4 line_search

Refer to line_search in Steady.

9.5.5 solve_type

Refer to solve_type in Steady.

9.5.6 nl_abs_step_tol

Refer to nl_abs_step_tol in Steady.

9.5.7 source_abs_tol

Description: Nonlinear absolute tolerance
Data type: Real

Default value: 10-°

Syntax: Executioner/source_abs_tol

Note: This parameter is used to control the termination of the Newton iteration. It essentially used to set
the default value of a PETSc control parameter -snes_atol. Users are allowed to directly use the PETSc control
parameter -snes_atol to overwrite this parameter.

9.5.8 mnl_max_funcs

Refer to nl_max_funcs in Steady.

9.5.9 nl max_its

Refer to nl_max_its in Steady.

9.5.10 source_rel_tol

Description: Nonlinear relative tolerance
Data type: Real

Default value: 10750

Syntax: Executioner/source_rel_tol

Note: This parameter is used to control the termination of the Newton iteration. It essentially used to set
the default value of a PETSc control parameter -snes_rtol. Users are allowed to directly use the PETSc control
parameter -snes_rtol to overwrite this parameter.
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9.5.11 mnl_rel_step_tol

Refer to nl_rel_step_tol in Steady.

9.5.12 petsc_options

Refer to petsc_options in Steady.

9.5.13 petsc_options_iname

Refer to petsc_options_iname in Steady.

9.5.14 petsc_options_value

Refer to petsc_options_value in Steady.

9.5.15 auto_initialization

Refer to auto_initialization in InversePowerMethod.

9.5.16 kO

Refer to kO in InversePowerMethod.

9.5.17 free_power_iterations

Description: The number of free power iterations before the Newton iteration
Data type: Integer
Default value: 4

Syntax: Executioner/free_power_iterations

9.5.18 time

Refer to time in InversePowerMethod.

9.5.19 mnormalization

Refer to normalization in InversePowerMethod.

9.5.20 normal_factor

Refer to normal_factor in InversePowerMethod.
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9.5.21 output_before_normalization

Refer to output_before_normalization in InversePowerMethod.

9.5.22 output_on_final

Refer to output_on_final in InversePowerMethod.

9.5.23 output_after_power_iterations

Description: True to output a step after free power iterations if there is any
Data type: Logical
Default value: true

Syntax: Executioner/output_after_power _iterations

9.6 CriticalitySearch

Occasionally, we’d like to determine a parameter p, such as the soluable boron concentration, control rod band
position, and etc., which is affecting the results of A(p,x) and/or B(p, x), so that the eigenvalue k of Eq. (54) can
be a specific value. Because when k = 1, the system is called critical and typically 1 is the targeted eigenvalue,
we name this kind of calculation as the criticality search. We can think the eigenvalue k(p) is a function of p. If
the parameter p is close to the target parameter, we can do Newton search for k(p) — kiarger = 0 with

pMH»:pm__<ﬂ

-1
— k(p"™) = Ktarget), 61
iy p:,g(n)) (k(p"™) = ktarget) (61)

with 4k is approximated by
dp :p(”)
dk
dp

_ k(1 + €) — k(p) .
ep(”) ’

p=p™
where € is a small scalar value used to perturb the parameter for evaluating the k-derivative with respect to
p. So for every Newton step 1, we perform two eigenvalue calculations one with the current parameter p(")
another with the perturbed parameter p(") (14 €) with PJENK with the free power iterations. It is noted that the
perturbation with e should be strong enough so that the numerical issue on evaluating k(p\™) (1 4 ¢€)) — k(p™
does not cause the instability of the search. The smaller % is, the larger € should be. On the other hand, if

large € is used, we end up with secant method, which converges slower than Newton’s method. Newton’s
method requires a fairly close initial guess of p when the k(p) is complicated. In such a case, we can perform
few bisection evaluations to obtain the initial guess.

9.6.1 adjustable_function

Description: The adjustable function coupled in the system having the adjustable parameter p

Data type: String
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Default value: <required>
Syntax: Executioner/adjustable_function

Note: An adjustable function is a MOOSE function which has a parameter affect its evaluation. It provides a
method for CriticalitySearch to adjust the parameter.

9.6.2 bisection

Description: Number of bisections before starting Newton
Data type: Integer

Default value: 0

Syntax: Executioner /bisection

Note: It must be greater than or equal to zero.

9.6.3 lowerbound

Description: The minimum value of the parameters
Data type: Real

Default value: <required>

Syntax: Executioner/lowerbound

Note: The estimated lower bound of the parameter. It is used for starting bisection search if bisection is greater
than zero. It is also used to check if the Newton update is out of bound.

9.6.4 upperbound

Description: The maximum value of the parameters
Data type: Real

Default value: <required>

Syntax: Executioner/upperbound

Note: The estimated upper bound of the parameter. It is used for starting bisection search if bisection is greater
than zero. It is also used to check if the Newton update is out of bound.

9.6.5 rel_tol

Description: Relative tolerance on the adjustable parameter
Data type: Real
Default value: 1074

Syntax: Executioner/rel_tol
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9.6.6 target_eigenvalue

Description: Targetted eigenvalue karget
Data type: Real
Default value: 1

Syntax: Executioner/target_eigenvalue

9.6.7 bisection_pi

Description: Number of free power iterations for bisection
Data type: Integer

Default value: 2

Syntax: Executioner /bisection_pi

Note: This parameter is activated only if bisection is greater than zero.

9.6.8 newton_pi

Description: Number of free power iterations for Newton search
Data type: Integer
Default value: 0

Syntax: Executioner/newton_pi

9.6.9 pre_pi

Description: Number of starting power iterations
Data type: Integer
Default value: 4

Syntax: Executioner/pre_pi

9.6.10 echo

Description: Used for controlling the screen printout
Data type: Integer

Default value: 1

Syntax: Executioner/echo

Note: The bigger this number is the more screen print-out will be seen.
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9.6.11 perturbation

Description: Perturbation strength € on the parameter p for evaluating dk/dp
Data type: Real
Default value: 10~°

Syntax: Executioner/perturbation

9.6.12 [_max_its

Refer to [_max_its in Steady.

9.6.13 pfactor

Refer to pfactor in InversePowerMethod.

9.6.14 [_abs_step_tol

Refer to [_abs_step_tol in Steady.

9.6.15 line_search

Refer to line_search in Steady.

9.6.16 solve_type

Refer to solve_type in Steady.

9.6.17 nl_abs_step_tol

Refer to nl_abs_step_tol in Steady.

9.6.18 source_abs_tol

Refer to source_abs_tol in NonlinearEigen.

9.6.19 mnl_max_funcs

Refer to nl_max_funcs in Steady.

9.6.20 nl_max_its

Refer to nl_max_its in Steady.
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9.6.21 mnl_rel_step_tol

Refer to nl_rel_step_tol in Steady.

9.6.22 petsc_options

Refer to petsc_options in Steady.

9.6.23 petsc_options_iname

Refer to petsc_options_iname in Steady.

9.6.24 petsc_options_value

Refer to petsc_options_value in Steady.

9.6.25 auto_initialization

Refer to auto_initialization in InversePowerMethod.

9.6.26 kO

Refer to kO in InversePowerMethod.

9.6.27 time

Refer to time in InversePowerMethod.

9.6.28 mnormalization

Refer to normalization in InversePowerMethod.

9.6.29 normal_factor

Refer to normal_factor in InversePowerMethod.

9.7 PicardSteady

This executioner essentially wraps the Steady executioner. It is still solving the general nonlinear problem
Fx(x) = 0. (63)

But the operator Fy is made to depend on x explicitly though auxiliary variables, material properties, post-
processors, multiapps and etc.. There are cases that decoupling this dependency from the non-linearity of the
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operator itself can make the nonlinear solves more efficient or can bypass difficulties in the nonlinear solves.
We essentially lag the operator one Picard iteration behind by doing

Foon(x™) =0, (64)

where 7 is the Picard iteration index. At every Picard iteration, the executioner will perform the steps specified
in Algorithm 3. The difference between one Picard iteration and the Steady executioner is that the later does
not have Step 1, 3, 6, 7, 8 and 9 but has the mesh adaptation loop.

Algorithm 3 Picard iteration

1: Run all MultiApps and Transfers on timestep_begin. If any MultiApp fails in converging, Picard iteration will
be aborted with an error message.

2: Evaluate all auxiliary variables, user objects (including postprocessors) on timestep_begin.

3: If Picard iteration is performed and the convergence is checked based on the residual, the residual L2 norm
will be evaluated based on the current state.

4: Do a nonlinear solve essentially resolve all objects on linear for setting up the equation. If the solve fails in
converging, Picard iteration will be aborted with an error message.

5. Evaluate all auxiliary variables, user objects (including postprocessors) on timestep_end.

6: Run all MultiApps and Transfers on timestep_end. If any MultiApp fails in converging, Picard iteration will be
aborted with an error message.

7. Evaluate all auxiliary variables, user objects (including postprocessors) on custorm.

8: Run all MultiApps and Transfers on custom. If any MultiApp fails in converging, Picard iteration will be
aborted with an error message.

9: If Picard iteration is performed and the convergence is checked based on the residual, the residual L2 norm
will be evaluated based on the current state.

The initial condition for x is problem dependent. The convergence can be checked with the norm of the non-
lagged residual

One more residual evaluation is needed for this check. The convergence can also be checked based on any
postprocessors which depend on x either directly or indirectly. As an example, we demonstrate how this exe-
cutioner are used to drive NDA (nonlinear diffusion acceleration) calculations in Sec. 3.8.

F o (x(m) H <e. (65)

9.7.1 Steady parameters

All parameters of Steady are valid parameters. Refer to Steady for more information.

9.7.2 picard_max_its

Description: Maximum number of Picard iterations.
Data type: Integer

Default value: 1

Syntax: Executioner/picard_max_its

Note: Default value one means no Picard iterations.
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9.7.3 ignore_picard_tol

Description: True to avoid extra residual norm evaluations and skip the check with picard_rel_tol and picard_abs_tol.
Date type: Logical
Default value: true

Syntax: Executioner/ignore_picard_tol

9.7.4 picard_rel_tol

Description: The relative nonlinear residual drop to shoot for during Picard iterations
Data type: Real

Default value: 108

Syntax: Executioner /picard_rel_tol

Note: This check is performed based on the Master application’s nonlinear residual. The nonlinear residual is
re-evaluated at the end of each Picard iteration where all variable transfers has been accomplished or states are
updated.

9.7.5 picard_abs_tol

Description: The absolute nonlinear residual to shoot for during Picard iterations
Data type: Real
Default value: 10~

Syntax: Executioner/picard_abs_tol

Note: This check is performed based on the Master application’s nonlinear residual. By default, this tolerance
will not take effect.

9.7.6 output_on_final

Description: True to output only the final solution.
Date type: Logical

Default value: true

Syntax: Executioner/output_on_final

Note: When this parameter is false, solutions will be outputted after every Picard step of all Picard iterations is
taken.

9.7.7 wrapped_app_tol

Description: Tolerance on the convergence of wrapped applications
Data type: Real
Default value: —1

Syntax: Executioner/wrapped_app-tol
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Note: Typically the wrapped applications are asked to return the residual L2 norm or the difference of its
solutions between before and after they are executed. This tolerance put a convergence check on these returned
values from the wrapped applications. By default, this tolerance will not take effect. This parameter will be
deprecated in the future in favor of convergence check with postprocessors.

9.7.8 multi_app _name

Description: MultiApp that executes with the Richardson executioner
Data type: String

Default value: Empty string

Syntax: Executioner/multi_app_name

Note: TransportUpdateExecutioner performs Richardson iteration and evaluates the difference of the solution
before and after one iteration. This parameter indicates the executioner that the particular MultiApp is executed
with Richardson and we can check the convergence of the MultiApp with wrapped_app_tol. This parameter will
be deprecated in the future in favor of convergence check with postprocessors.

9.8 PicardEigen

This executioner is almost identitical to PicardSteady except that it wraps the NonlinearEigen executioner. Its
parameters include the parameters of PicardSteady except those inherited from Steady executioner and all
parameters for the NonlinearEigen executioner. As an example, we demonstrate how this executioner are used
to drive NDA (nonlinear diffusion acceleration) calculations in Sec. 3.8.

9.8.1 NonlinearEigen parameters

All parameters of NonlinearEigen are valid parameters. Refer to NonlinearEigen for more information.

9.8.2 picard_max_its

Refer to picard_max_its in PicardSteady.

9.8.3 ignore_picard_tol

Refer to ignore_picard_tol in PicardSteady.

9.8.4 picard_rel_tol

Refer to picard_rel_tol in PicardSteady.

9.8.5 picard_abs_tol

Refer to picard_abs_tol in PicardSteady.
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9.8.6 output_on_final

Refer to output_on_final in PicardSteady.

9.8.7 wrapped_app_tol

Refer to wrapped_app_tol in PicardSteady.

9.8.8 multi_app_name

Refer to multi_app_name in PicardSteady.

9.8.9 extra_free_pi

Description: Number of free power iterations at each Picard iteration
Data type: Integer
Default value: 0

Syntax: Executioner/extra_free_pi

9.9 Richardson

There are cases the general nonlinear problem Eq. (43) can be written into
L(x) = R(x). (66)
Then we can perform an iteration
L(x") = R(x"1)). (67)

The above equation is solved with our PJFNK solver detailed in Steady. This executioner is not as general as
the PicardSteady executioner in a sense that MultiApps, user objects, auxiliary variables on timestep_begin and
timestep_end are not updated during iteration. Instead, typically only part of kernels representing operator R
are made operating on the old solutions. The scattering source iteration well-known in radiation transport is a
Richardson iteration.

9.9.1 Steady parameters

All parameters of Steady are valid parameters. Refer to Steady for more information.
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9.9.2  xdiff

Description: Postprocessor evaluating the difference of solutions of two successive Richardson iterations
Data type: String

Default value: <empty>

Syntax: Executioner/xdiff

Note: If this postprocessor is given, it will be used as the iteration error for determining the convergence. The
postprocessor must be executed on linear when more than one Richardson is going to performed, i.e. richard-
son_max_its is greater than 1. When richardson_max_its is equal to one, this postprocessor can be executed on
linear or timestep_end. If this postprocessor is not given, the executioner will evaluate the L2 norm of the solu-
tion vectors of two successive Richardson iterations as the iteration error and use the result for determining the
convergence.

9.9.3 richardson_max_its

Description: Maximum number of Richardson iterations
Data type: Integer
Default value: 1

Syntax: Executioner/richardson_max_its

9.9.4 richardson_rel_tol

Description: Relative tolerance for Richardson iterations

Data type: Real

Default value: 10750

Syntax: Executioner/richardson_rel_tol

Note: The executioner will record the iteration error of the first iteration as the reference.

Hx(n—l) ~ )

’ < max(rtol Hx(o) —x(M H ,atol), (68)

where ’x(”’l) —x()

specified with richardson_abs _tol.

‘ is the iteration error of n'* iteration; rtol is specified with this parameter and atol is

9.9.5 richardson_abs_tol

Description: Absolute tolerance for Richardson iterations
Data type: Real
Default value: 104

Syntax: Executioner/richardson_abs_tol
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9.9.6 output_after_its

Description: True to perform an output after Richardson iterations
Data type: Logical
Default value: true

Syntax: Executioner/output_after_its

9.9.7 debug

Description: True to add more screen print-outs for debugging purpose
Data type: Logical
Default value: true

Syntax: Executioner/debug

9.10 AMGUpdate

This executioner is a special Richardson executioner for CFEM SN. At each iteration, it first evaluate the residual
of the old solution

r(x" V) = —L(x") + R(x(" D). (69)
Then it solves the linear problem

Lox = r(x("" 1), (70)

where Lx is an approximation of L(x), and update solution
xMy = x(=1)) 4 x. (71)
Currently we use the block-diagonal Jacobian, where each block corresponds to a primal variable, as the ap-
proximation. This executioner is currently hard-coded BoomerAMG to solve Eq. (70) by solving each individ-
ual block sequentially. The Jacobian is constructed and stored. Because there is no PJFNK solver used, all the
parameters in Steady are invalid except petsc_options, petsc_options_iname and petsc_options_value. The rest of pa-

rameters in Richardson are valid parameters. This executioner works only when scheme is SAAF-CFEM-SN or
LS-CFEM-SN.

9.10.1 xdiff

Refer to xdiff in Richardson.

9.10.2 richardson_max_its

Refer to richardson_max_its in Richardson.
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9.10.3 richardson_rel_tol

Refer to richardson_rel tol in Richardson.

9.10.4 richardson_abs_tol

Refer to richardson_abs_tol in Richardson.

9.10.5 output_after_its

Refer to output_after_its in Richardson.

9.10.6 debug

Refer to debug in Richardson.

9.10.7 fixed jacobian

Description: True to assemble the Jacobian during the initialization stage
Data type: Logical

Default value: true

Syntax: Executioner/fixed jacobian

Note: When this parameter is false, the Jacobian will be assembled right before the Richardson iteration starts.

9.10.8 amg_tol

Description: Tolerance on the algebraic multigrid solve
Data type: Real
Default value: 10-°

Syntax: Executioner/amg_tol

9.10.9 amg_abs_tol

Description: Absolute tolerance on the algebraic multigrid solve
Data type: Real
Default value: 1070

Syntax: Executioner/amg_abs_tol

Note: AMG cycles will be terminated if either this parameter or amg_tol is met. There could be chances that the
initial residual norm of a variable is already bellow this tolerance. In such a case, no correction will be done on
the solution for this variable.
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9.10.10 amg_max_its

Description: Maximum number of multigrid cycles
Data type: Integer
Default value: 1000

Syntax: Executioner/amg_max_its

9.10.11 pre_pc_setup

Description: True to setup Pre-Conditioner data during the matrix assembly
Data type: Logical

Default value: False

Syntax: Executioner/pre_pc_setup

Note: This parameter provides users an option that using more memory to store the data for AMG to avoid the
CPU-time on evaluating them on-the-fly.

9.11 SweepUpdate

This executioner is like AMGUpdate, also a special Richardson executioner, developed for DFEM SN. It is a
matrix-free scheme on solving Eq. (70). Because the Jacobian is block-wise lower-triangular, where each block
corresponds a mesh element. So we can sweep through the mesh to solve Eq. (70) on local elements. We also
call this solver as sweeper. As AMGUpdate, all the parameters in Steady are invalid. The rest of parameters in
Richardson are valid parameters. This executioner works only when scheme is DFEM-SN.

9111 xdiff

Refer to xdiff in Richardson.

9.11.2 richardson_max_its

Refer to richardson_max_its in Richardson.

9.11.3 richardson_rel_tol

Refer to richardson_rel_tol in Richardson.

9.11.4 richardson_abs_tol

Refer to richardson_abs_tol in Richardson.
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9.11.5 output_after_its

Refer to output_after_its in Richardson.

9.11.6 debug

Refer to debug in Richardson.

9.12 IQS (improved quasi-static)

This is an executioner derived from Transient for solving transient problems. It is based on the observation that
the magnitude of the solution (or power) changes faster than the angular, spatial and energy distribution of
the solution in radiation transport simulations. The distribution or shape of the solution thus can be solved in
much large time steps along with magnitude update in lots of micro-steps between two time steps. Because the
magnitude equation is zero-dimensional, update with lots of micro-steps is trivial and can be done fast. The
cost on shape update is about the same as the normal time step solves in Transient executioner. As the result,
this executioner can significantly reduce the CPU time without loss the accuracy for certain applications. As
an enhancement, we can repeat the shape update at every time step multiple times with the magnitude update
because they are coupled. All the parameters in Transient are valid. Currently only CFEM-Diffusion supports

I1QS.

9.12.1 Transient parameters

All parameters of Transient are valid parameters. Refer to Transient for more information.

9.12.2 mn_micro

Description: Number of small timesteps for pke solves in each macro timestep
Data type: Integer
Default value: 1

Syntax: Executioner/n_micro

9.12.3 power_initial

Description: Initial power for PRKE solve
Data type: Real
Default value: 1

Syntax: Executioner/power_initial
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9.12.4 1QS_ error_tol

Description: The absolute nonlinear residual to shoot for during IQS iterations
Data type: Real

Default value: 10~

Syntax: Executioner/IQS_error_tol

Note: This is used to control the convergence of the Picard iteration at every time step due to the power profile
on micro-steps of this time step. Seems to me this is redundant and should be deprecated in the future.

9.12.5 do_iqs_transient

Description: True to perform IQS transient otherwise normal transient calculations without IQS
Data type: Logical

Default value: True

Syntax: Executioner/do_igs_transient

Note: This parameter is necessary for situations where accessing the IQS machinary is required but no 1QS
calculations is needed. For example, when pke_param_csv is provided.

9.12.6 pke_param_csv

Description: The CSV file used to output PKE parameters
Data type: String

Default value: <empty>

Syntax: Executioner/pke_param_csv

Note: When this parameter is provided, PKE (point kinetics equation) parameters will be evaluated and out-
putted in the CSV file at every time step.
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10 Postprocessors and User Objects

While postprocessors are generally for postprocessing and users need to know about. User objects in Rat-
tlesnake serves more general purpose other than postprocessing. They can be directly participating into the
residual evaluation, which users do not need to know for using Rattlesnake. So we only document user objects
for postprocessing purpose here.

10.1 MOOSE Postprocessors

The complete list of MOOSE postprocessors can be found in Fig. 24. Their parameters are fairly strait-forward
and can be found in MOOSE documents.

10.2 MOOSE Vector Postprocessors and User Objects

The complete list of MOOSE vector postprocessors and user objects can be found in Fig. 25. Their parameters
are fairly strait-forward and can be found in MOOSE documents.

10.3 Rattlesnake Postprocessors

(to be added) Reaction rate.

10.4 Rattlesnake User Objects

10.4.1 BaseLibObject

This user object loads the multigroup cross section library in YAKXS format which can be used by CoupledFeed-
backNeutronicsMaterial.
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10.4.1.1 block

Description: Mesh blocks the multigroup libraries are for
Data type: Vector of block names

Default value: <empty>

Syntax: UserObjects/*/block

Note: This parameter is used to decide if the multigroup libraries are to be loaded when the mesh is distributed.
Empty means that the libraries are to be loaded always.

10.4.1.2 force_load

Description: Force the loading of all libraries even if block ID is not in local mesh
Data type: Logical
Default value: false

Syntax: UserObjects/*/force_load

10.4.1.3 library_ file

Description: File name where libraries are included
Data type: String
Default value: <required>

Syntax: UserObjects/*/library_file

10.4.1.4 library_type

Description: Library type

Data type: Enumeration (/MultigroupLibrary/GammaMGLibrary /TransmutationLibrary/)
Default value: <required>

Syntax: UserObjects/*/library_type

Note: Currently only MultigroupLibrary type is supported.

10.4.1.5 isMeter

Description: True to indicate the mesh is in unit of meter
Data type: Logical
Default value: false

Syntax: UserObjects/*/isMeter
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10.4.1.6 debug

Description: True to report contents of the master library
Data type: Logical
Default value: false

Syntax: UserObjects/*/debug

10.4.1.7 library_name

Description: Master library name from which all sublibraries corresponding to the material IDs will be loaded
Data type: String
Default value: <required>

Syntax: UserObjects/*/library_name

10.4.1.8 [library_ids

Description: Material IDs to load from the library
Data type: Vector of integers

Default value: <empty>

Syntax: UserObjects/*/library_ids

Note: If this parameter is not specied all material IDs contained in the master library are loaded.

10.4.2 VariableCartesianCoreMap

This user object evaluates integrated values of variables on blocks, materials, regions, assemblies, pins of as-
semblies and sectors and rings of fuel pins and etc. over the entire solution mesh. The integrated values are
then outputted either on screen or into a file in a readable formatted manner. The evaluation is done by going
through all elements of the mesh and accumulating the quantities based on the corresponding IDs assigned to
the elements. Every element can have the block ID, material ID, region ID, assembly ID, fuel pin IDs, sector
ID and ring ID. While block, material, region IDs are somewhat independent, assembly, fuel pin and sector
and ring IDs are from the hierarchical structure of the geometry. Elements with the same pin ID may belong to
different assemblies and elements with the same sector ID or ring ID may belong to different pins in different
assemblies. To format the outputs, the single assembly ID is decoded into assembly x, y and z IDs with the
number of assemblies in X, y and z directions in the core, which can be used to indicate where the assembly is
located radially and axial for outputting. Similarly the single pin ID can be used for indicating the pin radial
location. Elements aligned axially all must have the same pin ID. While the block ID is typically inherent to
the mesh, like a mesh in the Exodus format, and is maintained by the mesh framework, other IDs requires the
users’ input and stored in this user object.

This user object provides two ways on how this IDs are inputted and assigned.

1. The most general way is to use elemental variables in the mesh file for all IDs. Currently this user object
uses the fixed variable names for the IDs listed in Table 26. The number of assemblies in X, y and z
direction of the entire mesh is automatically deferred while reading their x, y and z IDs and the x, y and
z IDs are encoded into a single assembly ID. The number of pins in x and y direction of each individual
assembly is also automatically deferred. It is noted that this way of ID input and assignment requires the
mesh generator to create the IDs in the variables and store them in the mesh file. Currently INSTANT LWR
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geometry mesh generator has the capability of generating all these IDs. Thus the C5G7 mesh generated
with INSTANT is used for illustrating the ID assignment in Fig. 26. It is noted that the mesh in the water
in Fig. 26 is removed for clarity. We are planning to have more built-in mesh generators to incorporate
more geometry information in the generated mesh.

2. Through a regular Cartesian grid. Users provide the assembly boundaries in x y and z directions and
number of pins in x and y direction. The elements falls into the grids are assigned with the corresponding
assembly IDs and pin IDs. The element centroids are used for determining if the elements are completely
inside a pin or completely outside. Elements covering two pins are not allowed. Although the function-
ality of this way is limited, i.e. only assembly and pin IDs can be assigned through this way, it provides a
useful and quick way for generating the core maps due to its simplicity. It is actually quite useful because
the geometry or at least the part of geometry we are mostly interested in are typically structured.

Table 26 Element variables for IDs.

ID type Variable name

Material ID | material id

Region ID subdomain_id
Assembly ID | assembly_x_id
assembly_y_id

assembly_z_id
Pin ID pinx_id
pin_y-id
Ring ID ring_id
Sector ID sector_id

10.4.2.1 execute_on

Description: Determines when the user object is evaluated and outputted
Data type: enumeration (refer to MOOSE execute_on)
Default value: timestep_end

Syntax: UserObjects/*/execute_on

10.4.2.2 print

Description: Vector of keywords controlling the information to be printed

Data type: Enumeration (/block/material /region/assembly /pin/pin_resolved/)
Default value: block + assembly

Syntax: UserObjects/*/print

Note: Multiple enumeration can be given for this parameter. If this parameter contains selections that the IDs
that are not assigned to, a warning will be generated on screen.

10.4.2.3 output_in

Description: Name of the file that data will be outputted in

Data type: String
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Default value: <empty>
Syntax: UserObjects/*/output_in

Note: If this parameter is not set, data will be outputted on screen.

10.4.2.4 regular grid

Description: Wether or not the grid is regular and constructed from grid coordinates in the input
Data type: Logical
Default value: false

Syntax: UserObjects/*/regular_grid

10.4.2.5 grid coord x

Description: Grid or assembly coordinates in x direction
Data type: Vector of reals

Default value: <empty>

Syntax: UserObjects/*/grid_coord _x

Note: This parameter is required when regular_grid is true. The number of assemblies in x direction nx is the size
of this parameter minus one. The assembly i in x direction is within [grid_coord_x[i — 1|, grid_coord x[i]],i =

1, nx].

10.4.2.6 grid_coord_y

Description: Grid or assembly coordinates in y direction
Data type: Vector of reals

Default value: <empty>

Syntax: UserObjects/*/grid_coord_y

Note: This parameter is required when regular_grid is true and the mesh dimension is bigger than one. The
number of assemblies in y direction ny is the size of this parameter minus one. The assembly i in y direction is
within [grid_coord_y[i — 1], grid_coord_y[i]],i =1, - ,ny].

10.4.2.7 grid_coord_z

Description: Grid or assembly coordinates in z direction
Data type: Vector of reals

Default value: <empty>

Syntax: UserObjects/*/grid_coord z

Note: This parameter is required when regular_grid is true and the mesh dimension is bigger than two. The
number of layers in z direction nz is the size of this parameter minus one. The layer i in z direction is within
[grid_coord z[i — 1], grid_coord z[i]],i =1,-- - ,nz].
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10.4.2.8 num_sub_grids_x

Description: Number of sub-grids or pins in x direction
Data type: Vector of integers

Default value: <empty>

Syntax: UserObjects/*/num_sub_grids_x

Note: The size of this parameter must be equal to nx, i.e. the size of grid_coord_x if it is given. If it is not given
and regular_grid is true then number of pins in x direction of all assemblies will be one.

10.4.2.9 num_sub_grids_y

Description: Number of sub-grids or pins in y direction
Data type: Vector of integers

Default value: <empty>

Syntax: UserObjects/*/num_sub_grids_y

Note: The size of this parameter must be equal to ny, i.e. the size of grid_coord_y if it is given. If it is not given
and regular_grid is true then number of pins in y direction of all assemblies will be one.

10.4.2.10 wvariables

Description: Variables to be mapped
Data type: Vector of variable names
Default value: <required>

Syntax: UserObjects/*/variables

Note: Averaged values of the variables on the selections will be evaluated and outputted.

10.4.3 FluxCartesianCoreMap

This user object differs from the VariableCartesianCoreMap in that it interacts with the transport systems for
automatically determining what variables are to be coupled for generating the core map. Thus it shares the
same set of parameters as VariableCartesianCoreMap except variables. It generates the values with the fission
neutron production rate, the power density, the neutron absorption rate, the total neutron flux and the group-
wise neutron fluxes on blocks, materials, regions and pin-resolved. It generates the map with either the fission
neutron production rate or the power density, and the total neutron flux when required on assemblies. It
generates the map with either the fission neutron production rate or the power density on pins.

10.4.3.1 execute_on

Refer to execute_on in VariableCartesianCoreMap.

10.4.3.2 print

Refer to print in VariableCartesianCoreMap.

278



10.4.3.3 output_in

Refer to output_in in VariableCartesianCoreMap.

10.4.3.4 regular_grid

Refer to reqular_grid in VariableCartesianCoreMap.

10.4.3.5 grid_coord x

Refer to grid_coord_x in VariableCartesianCoreMap.

10.4.3.6 grid_coord_y

Refer to grid_coord_y in VariableCartesianCoreMap.

10.4.3.7 grid_coord z

Refer to grid_coord_z in VariableCartesianCoreMap.

10.4.3.8 num_sub_grids x

Refer to num_sub_grids x in VariableCartesianCoreMap.

10.4.3.9 num_sub_grids_y

Refer to num_sub_grids_y in VariableCartesianCoreMap.

10.4.3.10 transport_system

Description: Name of the transport system
Data type: String

Default value: <required>

Syntax: UserObjects/*/transport_system

Note: The user object uses this parameter to interact with the transport system to determin where this user
object is defined on and what variables and material properties are to be coupled in.

10.4.3.11 print_assemblywise_fluxes

Description: True to print assembly-wise total scalar fluxes
Data type: Logical
Default value: False

Syntax: UserObjects/*/print_assemblywise_fluxes
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10.4.3.12 print_groupflux

Description: True to print fluxes for each group on all except pins
Data type: Logical
Default value: False

Syntax: UserObjects/*/print_groupflux

10.4.3.13 power_map_from

Description: What material property that normalized power map is generated from
Data type: Enumeration (/nu_sigma_f/kappa_sigma_£f/)
Default value: nu_sigma_f

Syntax: UserObjects/*/power_map_from

10.4.3.14 print_fission_absorption_ratio

Description: True to print ratio between fission neutron production and absorption loss on assemblies and pins
Data type: Logical
Default value: False

Syntax: UserObjects/*/print_fission_absorption_ratio

10.4.4 SAAFWrapper

This is the user object wrapping a high order transport system with SAAF-CFEM-SN scheme for nonlinear
diffusion acceleration.

10.4.4.1 input file

Description: The input file for the high order SAAF-CFEM-SN system
Data type: String
Default value: <required>

Syntax: UserObjects/*/input_file

10.4.4.2 accelerate_high_moments

Description: True to accelerate higher angular moments when they present
Data type: Logical
Default value: False

Syntax: UserObjects/*/accelerate_high_moments
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10.4.4.3 initial_correction

Description: True to do an initial correction
Data type: Logical

Default value: False

Syntax: UserObjects/*/initial_correction

Note: When this parameter is true, the angular fluxes on the high order system need to be initialized to non-zero
values.

10.4.5 LSWrapper

This is the user object wrapping a high order transport system with LS-CFEM-SN scheme for nonlinear diffu-
sion acceleration.

10.4.5.1 input_file

Refer to input_file in SAAFWrapper.

10.4.5.2 accelerate_high_moments

Refer to accelerate_high_moments in SAAF Wrapper.

10.4.5.3 initial_correction

Refer to initial_correction in SAAFWrapper.
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11 Awuxiliary variables and Kernels

Reaction rates.
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12 Outputs

Rattlesnake uses the MOOSE output system for the output. Variables, postprocessors can be outputted through
the output system directly. Exodus outputs can contain both the variables and postprocessors. CSV (comma
separated value) outputs are typically used for outputting scalar values like the postprocessors. Details about
MOQOSE output system can be found at http://mooseframework. org/wiki/MooseSystems/Outputs/.
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13 Advanced Features with MOOSE syntax

Rattlesnake is an open system in a sense that users can add new objects through the MOOSE syntax and let
them interact with the transport systems. For doing this, you will need to know the names of the objects al-
ready added by the transport systems including variables, auxiliary variables, material properties. Additional
variables, kernels, auxiliary variables, auxkernels, materials, user objects, multiapps, transfers, initial condi-
tions and etc. can be added. LRA benchmark actually demonstrates that how a simple temperature model can
be added and used to affect the transport system. Rattlesnake can also interact with other MOOSE modules
or applications easily for multiphysics simulations. Multiphysics coupling with MultiApp and Transfer (sprint
problem)

13.1 Rattlesnake Transfers
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